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Introduction

Linear models are only suitable for data that are (approximately)
normally distributed

However, there are many settings where we may wish to analyse a
response variable which is not necessarily continuous, including when

𝑌 is binary

𝑌 is a count variable

𝑌 is continuous, but non-negative

We consider particular distributions for binary/proportion and counts
data, in order to do likelihood-based inference
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Exponential Family

Definition. The distribution of 𝑌 is of exponential type if its density can
be written as

𝑓(𝑦, 𝜃, 𝜑) = exp (𝑦𝜃 − 𝑏(𝜃)
𝜑 + 𝑐(𝑦, 𝜑))

where 𝜃 ∈ ℝ is the canonical parameter, 𝜑 ∈ (0, ∞) is the dispersion
parameter, and 𝑏, 𝑐 are real functions

If 𝑏 ∈ 𝐶2, it can be shown using the moment generating function
𝑚(𝑡) = 𝔼𝑒𝑡𝑋 that

𝜇 ∶= 𝔼(𝑌 ) = 𝑏′(𝜃)
var(𝑌 ) = 𝜑𝑏″(𝜃)
var(𝑌 ) = 𝜑𝑉 (𝜇), where 𝑉 is called variance function
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Gaussian Distribution

𝑓(𝑥, 𝜇, 𝜎2) = 1√
2𝜋𝜎2 exp (−(𝑥 − 𝜇)2

2𝜎2 ) for 𝑥, 𝜇 ∈ ℝ and 𝜎2 ∈ (0, ∞)

= 1√
2𝜋𝜎2 exp (𝑥𝜇

𝜎2 − 𝜇2

2𝜎2 − 𝑥2

2𝜎2 )

= exp (𝑥𝜇 − 𝜇2/2
𝜎2 + [− 𝑥2

2𝜎2 − 1
2 log(2𝜋𝜎2)])

Hence

𝑏(𝜃) = 𝜇2/2 and 𝑐(𝑥, 𝜎2) = − 𝑥2
2𝜎2 − 1

2 log(2𝜋𝜎2) with 𝜃 = 𝜇 and
𝜑 = 𝜎2

var(𝑌 ) = 𝜑 ⋅ 1 ⇒ 𝑉 (𝜇) ≡ 1 (variance does not depend on
expectation)
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Bernoulli Distribution

𝑓(𝑥, 𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥 for 𝑥 ∈ {0, 1} and 𝑝 ∈ (0, 1)
= exp {𝑥 log 𝑝 + (1 − 𝑥) log(1 − 𝑝)}

= exp {𝑥 log 𝑝
1 − 𝑝 + log(1 − 𝑝)}

Hence

𝜃 = log 𝑝
1−𝑝 , 𝜑 = 1, 𝑏(𝜃) = − log(1 − 𝑝), and 𝑐(𝑥, 𝜑) = 0

var(𝑌 ) = 𝑝(1 − 𝑝) and 𝜇 = 𝔼𝑋 = 𝑝 ⇒ 𝑉 (𝜇) = 𝜇(1 − 𝜇)
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Poisson Distribution

𝑓(𝑥) = 𝜆𝑥

𝑥! 𝑒−𝜆 for 𝑥 ∈ {0, 1, 2 …} and 𝜆 ∈ (0, ∞)
= exp (𝑥 log 𝜆 − 𝜆 + log(1/𝑥!))

Hence

𝜃 = log 𝜆, 𝜑 = 1, 𝑏(𝜃) = 𝑒𝜃, and 𝑐(𝑥, 𝜑) = log(1/𝑥!)
var(𝑌 ) = 𝜆 and 𝜇 = 𝔼𝑋 = 𝜆 ⇒ 𝑉 (𝜇) = 𝜇
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GLMs
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Generalized Linear Models

Generalized linear models (GLMs) combine a model for the
conditional mean with a distribution (usually within the exponential
family) for the response variable and a link function tying predictors
and parameters

Linear regression (with normal errors) is a special case of a generalized
linear model

Today, we will give an introduction to generalized linear models and
focus in particular on binomial regression

We will only discuss the case of independent observations

Extensions of generalized linear models for correlated and longitudinal
(the so-called generalized linear mixed models), will be covered in
few weeks
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Notations
The starting point is the same as for linear regression:

We have a random sample of independent observations

(𝑌𝑖, X𝑖1, … , X𝑖𝑝), 𝑖 = 1, … , 𝑁
where 𝑌 is the response variable and X1, … , X𝑝 are 𝑝 explanatory
variables or covariates which are assumed fixed (non-random)

The goal is to model the response variable as a function of the
explanatory variables

Let 𝜇𝑖 denote the (conditional) mean of 𝑌𝑖 given covariates,

𝜇𝑖 = 𝔼(𝑌𝑖 ∣ X𝑖1, … , X𝑖𝑝)

Let 𝜂𝑖 denote the linear combination of the covariates that will be
used to model the response variable

𝜂𝑖 = 𝛽0 + 𝛽1X𝑖1 + ⋯ + 𝛽𝑝X𝑖𝑝
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Definition

There are three building blocks to the generalized linear model:
A probability distribution for the outcome 𝑌 that is a member of the
exponential family (normal, binomial, Poisson, gamma, inverse
Gaussian, …)

A linear predictor 𝜂 = X⊤𝛽
A function 𝑔, called link function, that links the mean of 𝑌𝑖 to the
predictor variables, 𝑔(𝜇𝑖) = 𝜂𝑖

The link between the mean of 𝑌 and the regression “line” is

𝑔 {𝔼(𝑌 ∣ X1, … , X𝑝)} = 𝛽0 + 𝛽1X1 + ⋯ + 𝛽𝑝X𝑝
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Link Function

The link function connects the mean to the explanatory variables

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝛽0 + 𝛽1X𝑖1 + ⋯ + 𝛽𝑝X𝑖𝑝
⇔ 𝜇𝑖 = 𝑔−1(𝜂𝑖) = 𝑔−1(𝛽0 + 𝛽1X𝑖1 + ⋯ + 𝛽𝑝X𝑖𝑝).

In the ordinary linear regression model, we do not impose constraints
on the mean 𝜇𝑖 and ̂𝜇𝑖 = ̂𝛽0 + ̂𝛽1X𝑖1 + ⋯ + ̂𝛽𝑝X𝑖𝑝 can take on any
value in (−∞, ∞)
For some response variables, we would need to impose constraints on
the mean

For Bernoulli responses, the mean 𝜇 = 𝑝 must lie in the interval (0, 1)
For Poisson responses, the mean 𝜆 must be positive

An appropriate choice of link function sets 𝜇𝑖 equal to a
transformation of the linear combination 𝜂𝑖 so as to avoid any
parameter constraints on 𝛽
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Choice of Link Function

Certain choices of the link function facilitate interpretation or make the likelihood
function convenient for optimization (smooth, i.e., differentiable and monotonic,
i.e., invertible)

For the Bernoulli and binomial distributions, an appropriate link function is
the logit function

logit(𝜇) ∶= log ( 𝜇
1 − 𝜇) = 𝜂 ⇔ 𝜇 = exp(𝜂)

1 + exp(𝜂)

For the Poisson distribution, an appropriate link function is the natural
logarithm

log(𝜇) = 𝜂 ⇔ 𝜇 = exp(𝜂)

For the normal distribution, an appropriate link function is the identity
function, 𝜇 = 𝜂
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MLE in GLM

ℓ(𝛽) = ∑𝑛
𝑌𝑛𝜃𝑛−𝑏(𝜃𝑛)

𝜑 + 𝑐(𝜑, 𝑌𝑛), where
𝜃𝑛 = (𝑏′)−1(𝜇𝑛) and 𝜇𝑛 = 𝑔−1(X⊤

𝑛𝛽)
⇒ maximization done via Iteratively Reweighted Least Squares (IRLS)
(requires gradient vector and Hessian matrix)

𝑈𝑛(𝛽) ∶= 1
𝜑𝑤𝑛𝑔′(𝜇𝑛)(𝑌𝑛 − 𝜇𝑛)𝑋𝑛, with 𝑤𝑛 = [𝑉 (𝜇𝑛){𝑔′(𝜇𝑛)}2]−1

shown using the chain and inverse function rules
Fisher information: I = 1

𝜑𝔼(X⊤WX)
weight matrix W diagonal with weights 𝑤𝑛
log-likelihood is concave and IRLS converges to the MLE
one can work with the Hessian (full Newton) instead of the expected
Hessian (Fisher scoring): beware of negative weights!

See Section 3.1 in Wood’s book
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MLE in GLM
MLE asymptotic theory implies that

𝛽̂ → 𝒩𝑝(𝛽, I−1) [Wald]
𝜑 is hidden. If unknown, estimate it consistently and use
Cramer-Slutzsky
tests for subsets of 𝛽 are based on the corresponding marginal normal
distributions (provided by summary(glm) in R)
used to obtain CIs. Use confint.default(glm, level=.95) in R

Let 𝐻0 ∶ 𝛽𝑝−𝑚+1 = … = 𝛽𝑝 = 0 hold in the GLM, ̂𝛽 denotes
parameter estimates in the model, and ̃𝛽 denotes parameter estimates
in the submodel given by the linear constraints in 𝐻0. Then
[likelihood ratio]

2{ℓ(𝛽̂) − ℓ(𝛽̃)} → 𝜒2
𝑚

can only be used when 𝜑 is known. Use car::Anova(glm) in R
can be used to get CIs (inverting the acceptance region) and are
preferred to Wald’s CIs. Use confint(glm, level=.95) in R
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Deviance

Definition
1 The saturated model is a model with the largest possible amount of

parameters (i.e., 𝑝 = 𝑁 and 𝜇𝑛 = 𝑦𝑛)
2 The statistic 𝐷(Y, 𝛽̂) = 2𝜑{ ̂ℓ(Y) − ℓ(𝛽̂)}, where ̂ℓ(Y) denotes the

maximized log-likelihood of the saturated model, is called the deviance

it is a goodness-of-fit measure
for linear models, it is equal to the residual sum of squares 𝑅2

it measures the discrepancy in fit between the full and the fitted
model and 𝜑−1𝐷(Y, 𝛽̂) ∼ 𝜒2

𝑁−𝑝−1 if the fitted model is adequate
(𝑝 + 1 is the number of 𝛽’s, including the intercept)
model summary(glm) in R provides:

null deviance: deviance of the intercept-only model (𝑁 − 1 df)
residual deviance: deviance of the provided model (𝑁 − 𝑝 − 1 df)

can be used for model comparison when 𝜑 is unknown (F statistic)
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Model Checking: Residuals

Pearson residuals, a.k.a. standardized residuals

𝜖𝑝
𝑛 = 𝑦𝑛 − ̂𝜇𝑛

√𝑉 ( ̂𝜇𝑛)
⇒ no trend in mean nor variance when plotted against fitted values

departure is proof against linearity
are obtained by residuals(glm, type="pearson")
should have zero mean but distribution can be asymmetric around 0

Deviance residuals
𝜖𝑑

𝑛 = 𝑠𝑖𝑔𝑛(𝑦𝑛 − ̂𝜇𝑛)√𝑑𝑛,
where 𝐷(Y, 𝛽̂) = ∑𝑁

𝑛=1 𝑑𝑛 ⇒ expected to behave like 𝒩(0, 𝜑) (if the
model holds)

departure is proof against response distribution
are obtained by residuals(glm) = residuals(glm,
type="deviance")

See here for examples of model diagnostics
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Section 3

Logistic Regression for Bernoulli and Binomial Data
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Generalized Linear Model for Binary Variables
In the case of a binary response variable, assume 𝑌𝑛 follows a
Bernoulli distribution with parameter 𝜋𝑛, 𝑌𝑛 ∼ Bin(𝜋𝑛), where

𝜋𝑛 = Pr(𝑌𝑛 = 1 ∣ X𝑛) = 𝔼(𝑌𝑛 ∣ X𝑛)

An appropriate link function for binary responses is the logit function

𝑔(𝑧) ∶= logit(𝑧) = log ( 𝑧
1 − 𝑧)

The logistic regression model is

𝑔(𝜋𝑛) = log ( 𝜋𝑛
1 − 𝜋𝑛

) = 𝜂𝑛 ∶= 𝛽0 + 𝛽1X𝑛1 + ⋯ + 𝛽𝑝X𝑛𝑝

The logit function 𝑔 is the quantile function of the logistic
distribution and links 𝔼(𝑌𝑛 ∣ X𝑛) = 𝜋𝑛(X𝑛) and 𝜂𝑛
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Logistic Regression: Logit Function
The logistic model is

𝜂𝑛 = log ( 𝜋𝑛
1 − 𝜋𝑛

) = 𝛽0 + 𝛽1X𝑛1 + ⋯ + 𝛽𝑝X𝑛𝑝

This model can also be written on the mean scale by using the
inverse-logit function,

𝔼(𝑌𝑛 ∣ X𝑛) = 𝜋𝑛 = exp(𝛽0 + 𝛽1X𝑛1 + ⋯ + 𝛽𝑝X𝑛𝑝)
1 + exp(𝛽0 + 𝛽1X𝑛1 + ⋯ + 𝛽𝑝X𝑛𝑝)

We have an expression for the mean 𝜋𝑛 = 𝔼(𝑌𝑛 ∣ X𝑛) as a function
of the explanatory variables X𝑛, but …

what does this function look like?

what does this tell us about the relationship between 𝜋𝑛 and 𝜂𝑛 (and
thus X𝑛)?
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Logistic Distribution Function
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Notice that 𝜋 is an increasing function of 𝜂 = 𝛽0 + ∑𝑝
𝑗=1 𝛽𝑗X𝑗

If 𝛽𝑗 is positive and X𝑗 increases, Pr(𝑌 = 1) also increases
If 𝛽𝑗 is negative and X𝑗 increases, Pr(𝑌 = 1) decreases

We also see that the relationship between Pr(𝑌 = 1) and 𝜂 (and thus
each X𝑗) is non-linear
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Parameter interpretations in terms of odds

Quantifying the effect sizes in logistic regression is not easy because
it’s a nonlinear model

The coefficients can be interpreted in terms of odds and odds ratios

Let 𝜋 = Pr(𝑌 = 1 ∣ X1, … , X𝑝), the logistic regression model is

log ( 𝜋
1 − 𝜋) = 𝛽0 + 𝛽1X1 + ⋯ + 𝛽𝑝X𝑝

By exponentiating both sides, we obtain

odds(𝑌 ∣ X) = 𝜋(X)
1 − 𝜋(X) = exp(𝛽0 + 𝛽1X1 + ⋯ + 𝛽𝑝X𝑝),

where 𝜋(X)/{1 − 𝜋(X)} are the odds of Pr(𝑌 = 1 ∣ X) relative to
Pr(𝑌 = 0 ∣ X)
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Odds

The logit function corresponds to modelling the log-odds

The odds for binary 𝑌 are the quotient

odds(𝜋) = 𝜋
1 − 𝜋 = Pr(𝑌 = 1)

Pr(𝑌 = 0)

For example, an odds of 4 means that the probability that 𝑌 = 1 is
four times higher than the probability that 𝑌 = 0
An odds of 0.25 means the probability that 𝑌 = 1 is only a quarter
times the probability that 𝑌 = 0, or equivalently, the probability that
𝑌 = 0 is four times higher than the probability that 𝑌 = 1

Pr(𝑌 = 1) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Odds 0.11 0.25 0.43 0.67 1 1.5 2.33 4 9
Odds (frac.) 1

9
1
4

3
7

2
3 1 3

2
7
3 4 9

Linda Mhalla Week 3: Generalized Linear Models 2025-03-03 23 / 44



Interpretation of the intercept in terms of the odds

When X1 = ⋯ = X𝑝 = 0, it is clear that

odds(𝑌 ∣ X = 0𝑝) = exp(𝛽0)

and

Pr(𝑌 = 1 ∣ X1 = 0, … X𝑝 = 0) = exp(𝛽0)
1 + exp(𝛽0)

which represents the probability that 𝑌 = 1 when X = 0𝑝
As for linear regression, X1 = ⋯ = X𝑝 = 0 might not be physically
possible, in which case there is no sensible interpretation for 𝛽0

Linda Mhalla Week 3: Generalized Linear Models 2025-03-03 24 / 44



Parameter interpretation in terms of the odds ratio

Consider for simplicity a logistic model of the form logit(𝜋) = 𝛽0 + 𝛽1𝑥
The factor exp(𝛽1) is the change in odds when X increases by one unit,

odds(𝑌 ∣ X = 𝑥 + 1) = exp(𝛽1) × odds(𝑌 ∣ X = 𝑥)

If 𝛽1 = 0 then the odds ratio is unity
meaning that the variable X is not associated with the odds of 𝑌

If 𝛽1 is positive, then the odds ratio exp(𝛽1) is larger than one,
meaning that, as X increases, the odds of 𝑌 increases

If 𝛽1 is negative, the odds ratio exp(𝛽1) is smaller than one,
meaning that, as X increases, the odds of 𝑌 decreases
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Interpretation of 𝛽𝑘 in terms of odds ratio

For the logistic model, the odds ratio when X𝑘 = 𝑥𝑘 + 1 versus X𝑘 = 𝑥𝑘
when X𝑗 = 𝑥𝑗 (𝑗 = 1, … , 𝑝, 𝑗 ≠ 𝑘) is

odds(𝑌 ∣ X𝑘 = 𝑥𝑘 + 1, X𝑗 = 𝑥𝑗, 𝑗 ≠ 𝑘)
odds(𝑌 ∣ X𝑘 = 𝑥𝑘, X𝑗 = 𝑥𝑗, 𝑗 ≠ 𝑘) =

exp (𝛽0 + ∑𝑝
𝑗=1 𝛽𝑗𝑥𝑗 + 𝛽𝑘)

exp (𝛽0 + ∑𝑝
𝑗=1 𝛽𝑗𝑥𝑗)

= exp(𝛽𝑘)

When X𝑘 increases by one unit and all the other covariates are held
constant, the odds of 𝑌 changes by a factor exp(𝛽𝑘)

The odds increase if exp(𝛽𝑘) > 1, i.e., if 𝛽𝑘 > 0
The odds decrease if exp(𝛽𝑘) < 1, i.e., if 𝛽𝑘 < 0
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Assessing Quality of Fit
The quality of fit of ̂𝜋𝑛 to 𝑦𝑛 (either 0 or 1) is measured by the deviance1

Dev ( ̂𝜋𝑖, 𝑦𝑖) = {−2 log ̂𝜋𝑖 if 𝑦𝑖 = 1
−2 log (1 − ̂𝜋𝑖) if 𝑦𝑖 = 0

= 𝑦𝑖 (−2 log ̂𝜋𝑖) + (1 − 𝑦𝑖) {−2 log (1 − ̂𝜋𝑖)}

The Residual Deviance

𝐷 =
𝑁

∑
𝑛=1

Dev ( ̂𝜋𝑛, 𝑦𝑛)

should behave like 𝜒2
𝑁−𝑝−1 if the model is correct and 𝑛𝑖’s (sample sizes per

combination of covariates) are large. Δ𝐷 (equiv. LRT) can otherwise be
used for model comparison (but not with saturated model)

The deviance residuals 𝜖𝑑
𝑛 = 𝑠𝑖𝑔𝑛(𝑦𝑛 − ̂𝜋𝑛)√Dev ( ̂𝜋𝑛, 𝑦𝑛) have the same

interpretation as for the ordinary linear model
1the likelihood of the saturated model is 1
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Example: Heart Disease Data

Understand how drinking coffee, spending on fast food, and annual income
are related to the likelihood of heart disease
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Food Spending and Heart Disease
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Example: Heart Disease Data

Call:
glm(formula = factor(heart_disease) ~ factor(coffee_drinker) +

fast_food_spend + income, family = binomial(link = "logit"),
data = heart_data)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
factor(coffee_drinker)1 -6.468e-01 2.363e-01 -2.738 0.00619 **
fast_food_spend 2.295e-03 9.276e-05 24.738 < 2e-16 ***
income 3.033e-06 8.203e-06 0.370 0.71152
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom
AIC: 1579.5

Number of Fisher Scoring iterations: 8
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Example: Heart Disease Data

All covariates except income are significant
coffee drinking is associated with a decrease in the odds of having a
heart disease: a decrease of exp(−0.65) ≈ 0.52, ceteris paribus
spending in fast food is associated with an increase in the odds of
having a heart disease: an increase of exp(2.3 ∗ 10−3) ≈ 1, ceteris
paribus

What about predictions?
head(predict(log_reg, type="link")) #linear combination of covariates

1 2 3 4 5 6
-6.549544 -6.791338 -4.614261 -7.724689 -6.245449 -6.217871
head(predict(log_reg, type="response")) #predicted probabilities

1 2 3 4 5 6
0.0014287239 0.0011222039 0.0098122716 0.0004415893 0.0019355062 0.0019895182
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Example: Heart Disease Data

What about binary classification?

Once you have predicted probabilities, how large should a predicted
probability be to predict a heart disease?

a cutoff of 0.5 seems a fair choice, but why?
it estimates the Bayes Classifier

𝒞𝐵𝑎𝑦𝑒𝑠(x) = arg max
0≤𝑘≤𝐽−1

Pr(𝑌 = 𝑘|X = x)

would a cutoff of 0.55 be better?
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Section 4

Classification and Model Evaluation
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Confusion Matrix
Given any chosen cutoff 𝑐, we can form binary predictions for each observation by
applying the cutoff to the fitted probabilities

̂𝑦𝑖 = {1 if ̂𝜋𝑖 > 𝑐
0 if ̂𝜋𝑖 ≤ 𝑐

The confusion matrix

̂𝑦 = 0 ̂𝑦 = 1
𝑦 = 0 # true negative (TN) # false positive (FP) 𝑁0
𝑦 = 1 # false negative (FN) # true positive (TP) 𝑁1

the diagonal gives the count of the correctly predicted instances
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (#𝑇 𝑃 + #𝑇 𝑁)/(𝑁0 + 𝑁1)

⇒ an optimal cutoff can be chosen to minimize #𝐹𝑃 + #𝐹𝑁 or (equivalently)
maximize accuracy of the classifier. But not always …
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Heart Disease Data: Confusion Matrix
Table 2: cutoff 0.5 - accuracy=0.9732

0 1

0 9627 40
1 228 105

Table 3: cutoff 0.35 - accuracy=0.9724

0 1

0 9571 96
1 180 153
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00
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#F
P

 +
 #
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N

The smallest value corresponds to the cutoff 0.55. Remember to check accuracy on a test set
(out of sample)
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ROC curves 2

Let’s define two measures of performance

Sensitivity = true positive rate = #𝑇 𝑃 /𝑁1
sensitivity decreases as the cutoff increases

Specificity = true negative rate = #𝑇 𝑁/𝑁0 = 1-FPR
specificity increases as the cutoff increases

Accuracy can be misleading if one class appears much more frequently than
another, as in the Heart Disease dataset

a model that just blindly predicts all patients to not develop heart disease
would achieve an accuracy of 96.67%
the accuracy would be even higher under more extreme imbalance (very rare
disease)

⇒ To compare classifiers across all cutoffs, we look at the ROC (Receiver
Operating Characteristics) curve

2Wojtek J. Krzanowski and David J. Hand, ROC Curves for Continuous Data (2009)
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ROC curve
If the purpose of the logistic regression is to construct a predictive model, then a
ROC curve is a useful graphical assessment of fit

ROC curve plots the specificity against 1−sensitivity for a range of cutoffs
→ takes the trade-off between FP and TP into account
a coin-toss classifier ≡ ROC curve is identity
the area under the curve (AUC) is a measure of prediction accuracy

the larger the AUC, and hence the farther away the ROC curve is from
the diagonal, the better the model performance
the AUC has also a probabilistic interpretation (see, e.g., Pepe, 2003,
p. 78): It is is the probability that the real-valued model output (e.g.,
the probability) for a randomly selected Yes case will be higher than
the real-valued model output for a randomly selected No case

computing AUC allows to quantitatively evaluate model performance
this could serve as a useful tool for model comparison as well
AUC=1 ⇒ model perfectly distinguishes between positive and negative
AUC=0.5 ⇒ model is no better than a random classifier
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Heart Disease: ROC curve
(in−sample) AUC = 0.95
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A good model has a high AUC, i.e., as often as possible a high sensitivity
and specificity!

Note: AUC should be estimated out-of-sample or cross-validated (AUC=
0.9497 with 5 folds)
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Heart Disease: Classification Tree 3

library(rpart)
library(rattle)

tree <- rpart(heart_disease ~., data=heart_data, method="class")
fancyRpartPlot(tree,palettes=c("Reds", "Greens"))
VI <- tree$variable.importance
barplot(VI, xlab="Variable", ylab="Importance", names.arg=names(VI),cex.names=0.8, col = "dodgerblue")
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3See the MATH-517 lecture notes
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Heart Disease: Classification Tree

What about prediction and accuracy?
ConfusionMatrix <- predict(tree, heart_data, type="class")
matrix <- table(heart_data$heart_disease,ConfusionMatrix)
print(matrix)

ConfusionMatrix
0 1

0 9611 56
1 203 130

accuracy <- sum(diag(matrix))/sum(matrix)
print(accuracy)

[1] 0.9741
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Heart Disease: Classification Tree

Since classification is binary with decision trees, one can use predicted
class probabilities to construct a ROC curve

(in−sample) CART AUC = 0.738
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Classification: Final Remarks

A classifier assumes a model for the joint distribution of (𝑌 , X) and
estimates it

Naive Bayes estimates a likelihood and a prior (Pr(X ∣ 𝑌 ) Pr(𝑌 ))
based on assumptions of conditional independencies
Logistic regression estimates Pr(𝑌 ∣ X) parametrically
Classification trees estimate Pr(𝑌 ∣ X) non-parametrically

Criteria for a good classifier
Accuracy (report AUC as it works under imbalance)
Runtime
Interpretability
Flexibility
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Section 5

General Tips
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How to approach an analysis?
It is not possible/desirable to produce a recipe that works for all analyses,
but here are some guidelines

1 Always start by identifying the questions that you are trying to answer
by analysing the data

2 Always look at the data before fitting any model. Plot the data to get
a feel of how variables are related. Check for obvious errors. If you
can think of simple methods (plots) that will give you informal
answers to your questions, use them before starting the formal model
based analysis

3 Now think about how you can use statistical methods/models to
answer the questions of interest

4 Once you start fitting the models that are part of your analysis, make
sure that you check that the modelling assumptions are met

5 Always make sure that you interpret the results of your modelling in
terms of the original question, and think carefully about any
limitations that apply to the answer
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Some principles for writing up a statistical analysis

1 Always clearly explain the context, and the questions being addressed
2 Make sure that your analysis is repeatable by any statistician with

access to the data, using the software of their choice. This means
presenting models and results in universal mathematical language, not
as R code and output

3 Always explain the ‘why’ of your analysis as well as the ‘what’
4 Relate your conclusions back to the questions, and be careful to

discuss the limitations of the approach taken
5 Aim to be concise and useful
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