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Section 1



Introduction

(]

Linear models are only suitable for data that are (approximately)
normally distributed

However, there are many settings where we may wish to analyse a
response variable which is not necessarily continuous, including when

Y is binary
@ Y is a count variable
e Y is continuous, but non-negative

@ We consider particular distributions for binary/proportion and counts
data, in order to do likelihood-based inference
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Exponential Family

Definition. The distribution of Y is of exponential type if its density can
be written as

ﬂ%&¢%=wp<wijW)+d%¢0

where 6 € R is the canonical parameter, ¢ € (0, 00) is the dispersion
parameter, and b, ¢ are real functions

If b € C?, it can be shown using the moment generating function
m(t) = Ee'X that

o p:=EY)="0'(0)

e var(Y) = ¢b”(0)

o var(Y) = ¢V (u), where V is called variance function
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Gaussian Distribution

flx,pu,0%) = ! exp _(:c—,u)2 for x,p € R and 02 € (0,00)
T Voo 207 | |

o? 202 2
Hence
o b(f) = p?/2 and c(z,0?%) = —% — 1 log(2mo?) with § =y and
2
p=0

e var(Y)=¢-1 = V(u) = 1 (variance does not depend on
expectation)
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Bernoulli Distribution

f(x,p) =p*(1 —p)t® for x€{0,1} and p € (0,1)
:exp{xlogp—i-(l—x)log(l— p)}

~ +log(1 - )}

ex xr 1()

° Hzlog%, ¢ =1,0b(0) = —log(l —p), and c(z,p) =
evar(Y)=p(l—p)and p=EX =p = V(u) = p(1 —

\_/
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Poisson Distribution

AI
flx) = —‘e_)‘ for x€{0,1,2...} and X € (0,00)
x

= exp (zlog A — X + log(1/x!))

Hence

o =log\ o=1,0b(0)=¢e’ and c(z,p) = log(1/z!)
evar(Y)=XNand pu=EX = = V(u) =pn
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Section 2




Generalized Linear Models

o Generalized linear models (GLMs) combine a model for the
conditional mean with a distribution (usually within the exponential
family) for the response variable and a link function tying predictors
and parameters

o Linear regression (with normal errors) is a special case of a generalized
linear model

@ Today, we will give an introduction to generalized linear models and
focus in particular on binomial regression

o We will only discuss the case of independent observations

o Extensions of generalized linear models for correlated and longitudinal
(the so-called generalized linear mixed models), will be covered in
few weeks
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Notations

@ The starting point is the same as for linear regression:
e We have a random sample of independent observations
(Y, X500, X)), i=1,...,N

where Y is the response variable and X, ..., X, are p explanatory
variables or covariates which are assumed fixed (non-random)

@ The goal is to model the response variable as a function of the
explanatory variables

@ Let y; denote the (conditional) mean of Y given covariates,
iy = E(Y; | Xips e 7Xip)

@ Let 7; denote the linear combination of the covariates that will be
used to model the response variable

n; = Bo + B X + -+ 5,Xy,
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Definition

@ There are three building blocks to the generalized linear model:

o A probability distribution for the outcome Y that is a member of the
exponential family (normal, binomial, Poisson, gamma, inverse
Gaussian, ...)

o A linear predictor n = X'

o A function g, called link function, that links the mean of Y, to the
predictor variables, g(u,;) =,

@ The link between the mean of Y and the regression “line"” is

g{E(Y | X},....X,) } =B+ BiXy + -+ 5,X,
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Link Function

@ The link function connects the mean to the explanatory variables

g(p;) =m; = By + b1 Xy + -+ B, X,
s =gt m) =9 By + Xy + o+ BpXip)-
@ In the ordinary linear regression model, we do not impose constraints

on the mean p; and i; = f, +BIX11 + -+ 6 X,;p can take on any
value in (—o0, 00)

@ For some response variables, we would need to impose constraints on
the mean

o For Bernoulli responses, the mean p = p must lie in the interval (0,1)
e For Poisson responses, the mean A must be positive

@ An appropriate choice of link function sets 1, equal to a
transformation of the linear combination 7; so as to avoid any
parameter constraints on (3
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Choice of Link Function

Certain choices of the link function facilitate interpretation or make the likelihood

function convenient for optimization (smooth, i.e., differentiable and monotonic,
i.e., invertible)

@ For the Bernoulli and binomial distributions, an appropriate link function is
the logit function

logit(11) ;zlog(ﬁ):n - “:m

@ For the Poisson distribution, an appropriate link function is the natural
logarithm

log(p) =n <« p=exp(n)

@ For the normal distribution, an appropriate link function is the identity
function, u =n
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MLE in GLM

ag ) Zn Yo —b0n) 4 c(e,Y,), where
=(b')" (Mn) and y,, = g1 (X, )

= maximization done via lteratively Reweighted Least Squares (IRLS)
(requires gradient vector and Hessian matrix)

o U,(B) = jw,g (1) (Y — ) Xy with w,, = [V (p,) {9 (11,,) 7]
e shown using the chain and inverse function rules
o Fisher information: I = é[E(XTWX)
o weight matrix W diagonal with weights w,,
o log-likelihood is concave and IRLS converges to the MLE
o one can work with the Hessian (full Newton) instead of the expected
Hessian (Fisher scoring): beware of negative weights!

See Section 3.1 in Wood's book
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https://www.taylorfrancis.com/books/mono/10.1201/9781315370279/generalized-additive-models-simon-wood

MLE in GLM

MLE asymptotic theory implies that
o f— N, (8,1 [Wald]

e ¢ is hidden. If unknown, estimate it consistently and use
Cramer-Slutzsky

o tests for subsets of 5 are based on the corresponding marginal normal
distributions (provided by summary(glm) in R)

o used to obtain Cls. Use confint.default(glm, level=.95) in R

o let Hy: 3, ,,;1 = ... = B, =0 hold in the GLM, BA denotes

parameter estimates in the model, and 5 denotes parameter estimates
in the submodel given by the linear constraints in H;. Then
[likelihood ratio]

2{¢(B) — £(B)} — x4

o can only be used when ¢ is known. Use car: :Anova(glm) in R

e can be used to get Cls (inverting the acceptance region) and are
preferred to Wald's Cls. Use confint(glm, level=.95) in R
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Deviance

Definition
© The saturated model is a model with the largest possible amount of
parameters (i.e.,, p =N and u, =v,,)
@ The statistic D(Y, B) = 20{¢(Y) — £(B)}, where £(Y) denotes the
maximized log-likelihood of the saturated model, is called the deviance

@ it is a goodness-of-fit measure
o for linear models, it is equal to the residual sum of squares R?

@ it measures the discrepancy in fit between the full and the fitted
model and ¢ ' D(Y,3) ~ X%vqu if the fitted model is adequate
(p + 1 is the number of §'s, including the intercept)

@ model summary(glm) in R provides:

o null deviance: deviance of the intercept-only model (N — 1 df)
o residual deviance: deviance of the provided model (N — p — 1 df)

@ can be used for model comparison when ¢ is unknown (F statistic)
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Model Checking: Residuals

@ Pearson residuals, a.k.a. standardized residuals
o = Yn—hn
V(i)
= no trend in mean nor variance when plotted against fitted values
e departure is proof against linearity
o are obtained by residuals(glm, type="pearson")
e should have zero mean but distribution can be asymmetric around 0

@ Deviance residuals
egz = Slgn(yn - lan) V d'ru

N d, = expected to behave like N (0, ¢) (if the

n=1

where D(Y,3) =3
model holds)
o departure is proof against response distribution

o are obtained by residuals(glm) = residuals(glm,
type="deviance")

See here for examples of model diagnostics
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Section 3

Logistic Regression for Bernoulli and Binomial Data
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Generalized Linear Model for Binary Variables

@ In the case of a binary response variable, assume Y,, follows a
Bernoulli distribution with parameter m,,, Y, ~ Bin(w,,), where

@ An appropriate link function for binary responses is the logit function

g(z) :=logit(z) = log (1 i z)

@ The logistic regression model is
T
g(ﬂ-n) = IOg (1 _nﬂ, ) =Mp = ,80 + ﬁlxnl + ot /Banp
n

@ The logit function g is the quantile function of the logistic
distribution and links E(Y,, | X,,) = 7,(X,,) and 7,,
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Logistic Regression: Logit Function

@ The logistic model is

T,
Nn = lOg (1 _nﬂ_ ) = BO + lenl + o+ Banp
n

@ This model can also be written on the mean scale by using the
inverse-logit function,
. eXp<ﬁO + lenl +oet Banp)

n 1 + eXp(,BO + /lenl + + /Banp>

E(Y, [X,) =7

@ We have an expression for the mean 7, = E(Y,, | X,,) as a function
of the explanatory variables X, , but ..

@ what does this function look like?

@ what does this tell us about the relationship between 7,, and 7, (and
thus X,,)?
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Logistic Distribution Function

o Notice that 7 is an increasing function of n = 3, + Z;‘):l B;X;

o If §; is positive and X increases, Pr(Y = 1) also increases
o If 3, is negative and X; increases, Pr(Y = 1) decreases

@ We also see that the relationship between Pr(Y = 1) and n (and thus
each X;) is non-linear
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Parameter interpretations in terms of odds

@ Quantifying the effect sizes in logistic regression is not easy because
it's a nonlinear model

@ The coefficients can be interpreted in terms of odds and odds ratios

o Let 7 =Pr(Y =1|X,...,X,), the logistic regression model is
s
IOg(l—ﬂ') =B+ HiXy+ o+ 5K,

@ By exponentiating both sides, we obtain

7(X)

odds(Y | X) = =X

= eXP(ﬁo + /81X1 + ot /8po)7

where 7(X) /{1 — m(X)} are the odds of Pr(Y =1 | X) relative to
Pr(Y =0 X)
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Odds

@ The logit function corresponds to modelling the log-odds
@ The odds for binary Y are the quotient

™ Pr(Y =1
odds(7) = 3= = 5y =)

@ For example, an odds of 4 means that the probability that Y =1 is
four times higher than the probability that Y =0

@ An odds of 0.25 means the probability that Y = 1 is only a quarter
times the probability that Y = 0, or equivalently, the probability that
Y = 0 is four times higher than the probability that Y =1

Pr(Y=1) 01 02 03 04 05 06 07 08 0.9

Odds 0.11 025 043 067 1 15 233 4 9
7

Odds (frac.) % 1 % % 1 3 3 4 9
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Interpretation of the intercept in terms of the odds

@ When X; ==X, =0, it is clear that

odds(Y | X = 0,) = exp(f)

and
exp(So)
PI‘Y:1 X :07,..X :O -_— -
( R p ) 1+ exp(By)
which represents the probability that Y =1 when X =0,
@ As for linear regression, X; = --- = X, = 0 might not be physically

possible, in which case there is no sensible interpretation for /3,
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Parameter interpretation in terms of the odds ratio

Consider for simplicity a logistic model of the form logit(7) = 5, + f;

The factor exp(/3;) is the change in odds when X increases by one unit,

odds(Y | X =2+ 1) = exp(f;) x odds(Y | X = x)

o If 3, = 0 then the odds ratio is unity
e meaning that the variable X is not associated with the odds of Y
e If B, is positive, then the odds ratio exp(f;) is larger than one,
e meaning that, as X increases, the odds of Y increases
e If 3 is negative, the odds ratio exp(/3;) is smaller than one,

e meaning that, as X increases, the odds of Y decreases
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Interpretation of 3, in terms of odds ratio

For the logistic model, the odds ratio when X, = x, 4+ 1 versus X, =z,
when X, =z, (j=1,...,p,j #F k) is

odds(Y | Xy =2y +1,X; =2, j# k) oxp(Bo+ X Bz, + By)

odds(V [ Xy =2 X, =20 7 K) exp (fy+ X, Bya)
= exp(ﬂk)

When X, increases by one unit and all the other covariates are held
constant, the odds of Y changes by a factor exp(/3;,)

@ The odds increase if exp(f;) > 1, i.e., if 5, >0
@ The odds decrease if exp(3,) < 1, i.e., if B, <0
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Assessing Quality of Fit

The quality of fit of 7,, to y,, (either 0 or 1) is measured by the deviance!
- —2log T, ify, =1
D o _ % %
ev (R, 4:) {QIOg(lfri) if y; = 0
= y;(—2log7;) + (1 —y;) {—2log (1 —7;)}

@ The Residual Deviance

N
D= ZDGV (T, Yn)
n=1

should behave like X?\/—p—l if the model is correct and n;'s (sample sizes per
combination of covariates) are large. AD (equiv. LRT) can otherwise be
used for model comparison (but not with saturated model)

@ The deviance residuals ¢ = sign(y,, — 7, )\/Dev (7,,,¥,,) have the same
interpretation as for the ordlnary linear model

Lthe likelihood of the saturated model is 1
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Example: Heart Disease Data

Understand how drinking coffee, spending on fast food, and annual income

are related to the likelihood of heart disease

Food Spending and Heart Disease

5000~ .

2000~ -

2000~

heart_disease
=10
B ves

Annual Fast Food Spending

Heart Disease (Y/N)
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Example: Heart Disease Data

Call:

glm(formula = factor(heart_disease) ~ factor(coffee_drinker) +
fast_food_spend + income, family = binomial(link = "logit"),
data = heart_data)

Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 **x*
factor(coffee_drinker)1l -6.468e-01 2.363e-01 -2.738 0.00619 *x*
fast_food_spend 2.295e-03 9.276e-05 24.738 < 2e-16 **x
income 3.033e-06 8.203e-06 0.370 0.71152
Signif. codes: O '*¥x' 0.001 '**x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom
AIC: 1579.5
Number of Fisher Scoring iterations: 8
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Example: Heart Disease Data

@ All covariates except income are significant

o coffee drinking is associated with a decrease in the odds of having a
heart disease: a decrease of exp(—0.65) ~ 0.52, ceteris paribus

e spending in fast food is associated with an increase in the odds of
having a heart disease: an increase of exp(2.3 * 1073) ~ 1, ceteris
paribus

@ What about predictions?
head(predict(log_reg, type="link")) #linear combination of covariates
1 2 3 4 5 6
-6.549544 -6.791338 -4.614261 -7.724689 -6.245449 -6.217871

head(predict(log_reg, type="response")) #predicted probabilities

1 2 3 4 5 6
0.0014287239 0.0011222039 0.0098122716 0.0004415893 0.0019355062 0.0019895182
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Example: Heart Disease Data

What about binary classification?

Once you have predicted probabilities, how large should a predicted
probability be to predict a heart disease?

@ a cutoff of 0.5 seems a fair choice, but why?

e it estimates the Bayes Classifier

C Bayes(x) = argmax Pr(Y = k|X = x)
0<k<J-1

@ would a cutoff of 0.55 be better?
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Section 4




Confusion Matrix

Given any chosen cutoff ¢, we can form binary predictions for each observation by
applying the cutoff to the fitted probabilities

The confusion matrix

=0 j

y=0 # true negative (TN)

# false positive (FP) N,
y=1 4 false negative (FN)

# true positive (TP) N,

@ the diagonal gives the count of the correctly predicted instances

accuracy = (#TP + #TN)/(Ny + Ny)

= an optimal cutoff can be chosen to minimize #F P + #FN or (equivalently)
maximize accuracy of the classifier. But not always ..

Linda Mhalla Week 3: Generalized Linear Models

2025-03-03 33 /44



Heart Disease Data: Confusion Matrix

Table 2: cutoff 0.5 - accuracy=0.9732 Table 3: cutoff 0.35 - accuracy=0.9724

0 1 0 1

0 9627 40 0 9571 96

1 228 105 1 180 153

BEP 4N
800 1000

600

400
L

The smallest value corresponds to the cutoff 0.55. Remember to check accuracy on a test set
(out of sample)
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ROC curves 2

Let’s define two measures of performance

@ Sensitivity = true positive rate = #TP/N;
e sensitivity decreases as the cutoff increases

@ Specificity = true negative rate = #TN/N, = 1-FPR
e specificity increases as the cutoff increases

Accuracy can be misleading if one class appears much more frequently than
another, as in the Heart Disease dataset

@ a model that just blindly predicts all patients to not develop heart disease
would achieve an accuracy of 96.67%

@ the accuracy would be even higher under more extreme imbalance (very rare
disease)

= To compare classifiers across all cutoffs, we look at the ROC (Receiver
Operating Characteristics) curve

2Wojtek J. Krzanowski and David J. Hand, ROC Curves for Continuous Data (2009)
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ROC curve

If the purpose of the logistic regression is to construct a predictive model, then a
ROC curve is a useful graphical assessment of fit

@ ROC curve plots the specificity against 1—sensitivity for a range of cutoffs
— takes the trade-off between FP and TP into account

@ a coin-toss classifier = ROC curve is identity

@ the area under the curve (AUC) is a measure of prediction accuracy
o the larger the AUC, and hence the farther away the ROC curve is from
the diagonal, the better the model performance
o the AUC has also a probabilistic interpretation (see, e.g., Pepe, 2003,
p. 78): It is is the probability that the real-valued model output (e.g.,
the probability) for a randomly selected Yes case will be higher than
the real-valued model output for a randomly selected No case

@ computing AUC allows to quantitatively evaluate model performance

e this could serve as a useful tool for model comparison as well
o AUC=1 = model perfectly distinguishes between positive and negative
e AUC=0.5 = model is no better than a random classifier
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Heart Disease: ROC curve

(in-sample) AUC = 0.95

= R A e e T e e e e |
= e |-
= / Fe
o/ .
>.D7 [ o
s
2
g
< L 3
° o
o |
o
s | .
0.0 0.2 0.4 0.6 0.8 1.0

1-specificity

A good model has a high AUC, i.e., as often as possible a high sensitivity
and specificity!

Note: AUC should be estimated out-of-sample or cross-validated (AUC=
0.9497 with 5 folds)
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Heart Disease: Classification Tree 3

library(rpart)
library(rattle)

tree <- rpart(heart_disease ~., data=heart_data, method="class")

fancyRpartPlot (tree,palettes=c("Reds", "Greens"))

VI <- tree$variable.importance

barplot(VI, xlab="Variable", ylab="Importance", names.arg=names(VI),cex.names=0.8,

fast_food_spend < 4500 R
@
1
44 56
3%
fast_food_spend < 4930

0
58 42
2%

income < 27e+3

1
41 59
1%

Rattle 2025-Mar-03 10:58:00 mhalla

Importance

I —
fast_food_spend income. coffee_drinker

Variable

3See the MATH-517 lecture notes
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Heart Disease: Classification Tree

What about prediction and accuracy?

ConfusionMatrix <- predict(tree, heart_data, type="class")

matrix <- table(heart_data$heart_disease,ConfusionMatrix)
print (matrix)

ConfusionMatrix
0 1
0 9611 56
1 203 130

accuracy <- sum(diag(matrix))/sum(matrix)
print (accuracy)

[11 0.9741
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Heart Disease: Classification Tree

Since classification is binary with decision trees, one can use predicted
class probabilities to construct a ROC curve

(in-sample) CART AUC = 0.738

L
T
101

T
0.81

sensitivity

0.
0.22

!
f
0.02

1-specificity
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Classification: Final Remarks

@ A classifier assumes a model for the joint distribution of (Y, X) and
estimates it

o Naive Bayes estimates a likelihood and a prior (Pr(X | Y) Pr(Y))
based on assumptions of conditional independencies

o Logistic regression estimates Pr(Y | X) parametrically

o Classification trees estimate Pr(Y | X) non-parametrically

o Criteria for a good classifier

Accuracy (report AUC as it works under imbalance)
Runtime

Interpretability

Flexibility
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Section 5




How to approach an analysis?

It is not possible/desirable to produce a recipe that works for all analyses,
but here are some guidelines

© Always start by identifying the questions that you are trying to answer
by analysing the data

@ Always look at the data before fitting any model. Plot the data to get
a feel of how variables are related. Check for obvious errors. If you
can think of simple methods (plots) that will give you informal
answers to your questions, use them before starting the formal model
based analysis

© Now think about how you can use statistical methods/models to
answer the questions of interest

@ Once you start fitting the models that are part of your analysis, make
sure that you check that the modelling assumptions are met

© Always make sure that you interpret the results of your modelling in
terms of the original question, and think carefully about any
limitations that apply to the answer

Linda Mhalla Week 3: Generalized Linear Models 2025-03-03 43 /44



Some principles for writing up a statistical analysis

Always clearly explain the context, and the questions being addressed
Make sure that your analysis is repeatable by any statistician with
access to the data, using the software of their choice. This means
presenting models and results in universal mathematical language, not
as R code and output

Always explain the ‘why’ of your analysis as well as the ‘what’

Relate your conclusions back to the questions, and be careful to
discuss the limitations of the approach taken

© Aim to be concise and useful

©0

©0
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