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Section 1



Causal inference: What is the effect of the cause?

Aim: focuses on determining the effect of one variable on another, based

on observational or experimental /interventional data, and a given set of
assumptions

@ Purpose: To estimate the effect of interventions or treatments

o Methods: Randomized trials, matching, regression, instrumental
variables

o Challenge: Controlling for confounding variables
References:

@ Pearl (2000), second edition (2009)

@ Hernan and Robins (2020)
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http://bayes.cs.ucla.edu/BOOK-2K/
https://www.hsph.harvard.edu/miguel-hernan/wp-content/uploads/sites/1268/2024/01/hernanrobins_WhatIf_2jan24.pdf

Causal discovery: What is the cause of the effect?

Aim: uncovers the underlying causal structure of a dataset without
necessarily having prior knowledge of the relationships between variables

@ Purpose: To identify potential causal relationships among multiple
variables

@ Methods: To follow

@ Challenge: Determining the direction of causation from observational

data alone

References: To follow
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Introduction: What to do when concerned with causal
relationships?

Controlled experiments can be expensive, time-consuming, unethical,
impractical, or even infeasible

Intriguing alternative: causal discovery from purely observational data
Spirtes et al., 2000 and Pearl (2000), second edition (2009)

Question: Do observational data from p(X,Y") suffice to identify the
direction of causality between X and Y7

Answer: No, generally..
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https://link.springer.com/book/10.1007/978-1-4612-2748-9
http://bayes.cs.ucla.edu/BOOK-2K/

Introduction

Proposition (Non-unique Graphs)
For any joint distribution p(X,Y"), there exists a Structural Equation
Model (SEM):

Y =gy (X,€y), X isindependent of ey,

where gy is a measurable function and €y is a random variable (noise)

Proof: Consider gy (z,€) = F}jﬁX:x(e), where € ~ 2/(0,1) and € is
independent of X

= Every joint distribution p(X,Y) admits SEMs in both possible causal
directions, unless restrictions are imposed on gy and/or on the noise €y-
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Introduction

Learn causal structure directly from statistical properties (e.g., conditional
independencies) of observational data

@ Methods:

o Constraint-based methods: Identify conditional independencies and
use them to infer causal structure
e PC Algorithm or Fast Causal Inference (Spirtes, Glymour and Scheines,
2000)
o Restricted models methods: Impose additional assumptions on
model class, noise distributions, causal function
o RESIT (Peters et al., 2014) or LINGAM (Shimizu et al., 2006)
e Score-based methods: Evaluate how well a causal model fits the data
using a scoring function (penalized likelihood or log-posterior)
o Greedy Equivalence Search (GES) of Chickering, 2003

@ Challenges:

e Underlying assumptions (e.g., no hidden confounders, correct model
specification)
e Computational complexity and feasibility in high-dimensional spaces

o Reliability of conclusions drawn from purely observational data
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https://link.springer.com/book/10.1007/978-1-4612-2748-9
https://link.springer.com/book/10.1007/978-1-4612-2748-9
https://jmlr.org/papers/volume15/peters14a/peters14a.pdf
https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://www.jmlr.org/papers/volume3/chickering02b/chickering02b.pdf

Section 2



Concepts of graphs
Definition (Graph)

A graph G is a pair (X, E) where:
o X = {Xj,..., X, } is the set of vertices
o E C{(X;,X;) € X?|i # j} is the set of edges

A path is a sequence of edges such as < (X; X,) (X5 X3) -+ (X5 1 X) >
Definition (Directed Graph)

A directed graph G is a pair (X, E) where:
o X ={Xj,..., X, } is the set of vertices
o EC{(X;,X;), € X?i# j} is the set of arcs. An arc (X, X;), is
a directed edge from X, to X;

A cycle is a directed path from and to the same vertex, e.g.,
< (X X)L, (X Xg) o, e, (X Xy ), >
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Concepts of graphs

A directed acyclic graph (DAG) is a directed graph without cycles

The vertices of a DAG G represent random variables described by parent-child
relationships:

e Pa(i) = {X;: (X,X;)_, is an edge of G} (parent)

(1) = {X; : (X;X;)_, is an edge of G} (child)

@ An(i) = {X;: X; = X = - X, — X, is a directed path of G} (ancestor)
(1) ={X;: X; = X}, = - X; = X is a directed path of G}
S
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Definition of d-separation
Given a path X; X, ... X,, ; X,,, we say X, is a collider (relative to the path) if
Xo1 =+ X=Xy

The path is blocked by a set of nodes S with X, X,, ¢ S if for some
Le{2,...,m— 1} either:

@ X, is not a collider and X, € S, or
@ X, is a collider and neither X, nor any of its descendants are in .S

Definition

Given disjoint subsets of nodes A, B and S, we say A and B are d-separated by
S, and write:

AllgB|S,
if every path between A and B is blocked by S
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Structural Causal Models: The link between distributions
and graphs!

A structural causal model (SCM) is a system of equations:

X; = hj(XPjagj)
where:

® £q,...,€, are independent noise variables
o P; C V \{j} are such that the graph with P, = pa(j) is a DAG

Causal ordering: Given a DAG G, a bijective mapping 7
m:{1,...,p} = {1,...,p}

is said to be a causal ordering of the variables if it satisfies
(i) < w(j) if j € De(q)
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Definitions

@ Markov condition: Conditional on the set of all its parent nodes, a node is
independent of all other non-descendants nodes. Under the Markov
condition, the joint probability satisfies

p
Pr(X,, X,, ..., X,) = [ [ Pr(X; | Pa(i))
i=1

= connects a distribution and a causal DAG

@ Global Markov condition: A 1L; B|S — X, 1 Xp | Xg, for all
disjoint sets of vertices A, B, and §

@ Markov equivalence class: A class of DAGs that encode the same
conditional independence relationships among a set of variables
= while graphs in this class may have different structures, they entail the
same set of conditional independencies

Proposition (valid in a DAG that generates P)

If X; U X, | X, for every A CV\ {j,k}, then either X; — X or X; - X,
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Section 3




The PC algorithm

The classic PC (Peter—Clark) algorithm was introduced by Spirtes,
Glymour and Scheines (2000), Section 5.4.2. The algorithm assumes
specific statistical assumptions

Assumptions: The key assumptions of the PC algorithm are:

o Causal sufficiency: There are no hidden confounders

o Faithfulness: Conditional independencies in the data imply
conditional independencies in the DAG

@ Markov condition: A variable is conditionally independent of its
non-descendants given its parents in the DAG

The algorithm
e measures conditional independencies in the (observational) data

@ searches for graph which satisfies the assumptions = we only get
identifiability up to the Markov equivalence class

Linda Mhalla Week 5: Causal Discovery from Observationa 2025-03-17 15/39


https://link.springer.com/book/10.1007/978-1-4612-2748-9
https://link.springer.com/book/10.1007/978-1-4612-2748-9

The PC algorithm

Algorithm

1. Start with a fully connected undirected graph

2. Test for conditional independence among all pairs and subsets of variables,
je, test X LY \ Z for varying sets Z

3. Remove edges based on the outcomes of conditional independence tests

4. Continue until no more edges can be removed without violating the
conditional independencies observed in the data

5. Apply orientation rules (v-structures, collider, etc.) to orient as many
undirected edges as possible

6. Make final adjustments to prevent cycles and ensure the graph remains
acyclic

The Rank PC algorithm, proposed by Harris and Drton (2013), is an extension of
the PC algorithm and uses the rank-based Spearman correlation to perform the
independence tests = more robust to non-Gaussian data
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https://jmlr.csail.mit.edu/papers/volume14/harris13a/harris13a.pdf

The PC algorithm with Gaussian data

In the multivariate Gaussian setting, testing conditional independence is
equivalent to testing for zero partial correlation:

@ Hypothesis testing:
o Null hypothesis Hy : pyy|g =0
o Alternative hypothesis H, : pxy g # 0
@ Significance level a:
e Serves as a tuning parameter for the PC algorithm

Note |: performance of the algorithm depends on the validity of the assumptions
but mostly on the correctness of the independence tests

Consistency: Under the specified assumptions, if the conditional independence
decisions are correct (e.g., use an oracle independence test), the PC algorithm is
guaranteed to converge to the true Markov equivalence class

Note II: If Gaussianity assumed, conditional independencies <= non-zero coefs
from a linear regression of X; on X_,. Generally, compute ECov(X,Y | Z) and
use generalised covariance measure + double machine learning
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https://projecteuclid.org/journals/annals-of-statistics/volume-48/issue-3/The-hardness-of-conditional-independence-testing-and-the-generalised-covariance/10.1214/19-AOS1857.full
https://academic.oup.com/ectj/article-abstract/21/1/C1/5056401?redirectedFrom=fulltext

The PC algorithm: Example

library(pcalg)
n <- 1000
set.seed(222)

epsl <- rnorm(n,0,1)
eps2 <- rnorm(n,0,2)
eps3 <- rnorm(n,0,.7)
eps4 <- rnorm(n,0,1.5)
eps5 <- rnorm(n,0,1)

x1 <- epsil

x2 <- eps2

x3 <- x1 + x2 + eps3
x4 <- 2*x1 + eps4

x5 <- 3*x3 + epsb

data <- cbind(x1,x2,x3,x4,x5)
data <- data.frame(data)

pc.fit <- pc(suffStat = 1list(C = cor(data), n = n),
indepTest = gaussCItest,
labels = names(data),
alpha = 0.01, verbose = FALSE)
plot(pc.fit@graph)
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The PC algorithm: Example

x2

x3 x4

X5

Linda Mhalla Week 5: Causal Discovery from Observationa 2025-03-17 19/39



Section 4



Linear model with additive noise

Consider the linear structural equation model

X=BX+¢ with BeRPP X cRP,eceRP

@ Gaussian noise = cannot distinguish between Markov equivalent
graphs

o different matrices B can generate the same distribution of X, which is
Gaussian and completely determined by mean and covariance

@ Non-Gaussian data

e not fully determined by mean and covariance = structure becomes
identifiable
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Linear model with additive Gaussian noise

Hypothesis: The cause X has a linear effect on Y. More precisely:

Y = aX + €y, €y isindependent of X,

where o € R.

Let X and Y be two continuous random variables whose joint distribution
p(X,Y) satisfies:

Y = aX + €y, €y isindependent of X

Then, there exists £ in R and a continuous random variable €y such that:

X =08Y + €y, €xisindependent of Y,

if and only if X and €y, are Gaussian

— It is sufficient that the noise or the effect is non-Gaussian to identify the causal
direction
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LiNGAM: Linear non-Gaussian acyclic models

LINGAM assumes
@ acyclicity =
o a causal ordering exists (might not be unique)
o the diagonal elements of B are zero (no self-loops)
e using a causal ordering makes B strictly lower triangular
@ ¢ is mean-zero non-Gaussian with positive variance
@ noise components are mutually independent, i.e., no hidden variables

Goal: Based on n i.i.d. observations of X, estimate B or equivalently,
learn the DAG (asnon-zeros in B are edges in the DAG)
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LiNGAM: Linear non-Gaussian acyclic models

LiINGAM can be written as

X = BX+e¢
X = (I-B)le

= use Independent component analysis (ICA) to estimate/identify (I — B)™!
and hence B

ICA model: X = AS

- X € RP: observed variables
- S € RP: independent and continuous non-Gaussian variables
- A € RP*P: unobserved full rank matrix

If S is non-Gaussian, then A is identifiable up to permutation, scaling and sign of
the columns

= Properties of B are exploited to find the “correct” permutation
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ICA-LINGAM algorithm

o

©0

Given n i.i.d. observations of X, use ICA to estimate

W = A~' = (I — B) (up to permutation, scaling and sign of the
columns of the “true A")

Find unique permutation of the rows of W that yields W without any
zeros on the diagonal

Divide each row of W by its diagonal element to yield W’ with only
ones on the diagonal

Compute B=1— W’

Find causal order by making B = PBPT as close as possible to
strictly lower triangular (prune edge weights, e.g. using sparse
regression or significance testin)

Note I: ICA-based algorithms may get stuck in local optima

Note II: Alternative method is DirectLiNGAM (guaranteed convergence as
n — 00)
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https://www.jmlr.org/papers/volume12/shimizu11a/shimizu11a.pdf

LINGAM in R

require(pcalg)
require (igraph)

### Linear SEM with uniform errors
n <- 1000

epsl <- runif(a,-.5,.5)
eps2 <- runif(an,-.3,3)
eps3 <- runif(n,-.7,.7)
eps4 <- runif(n,-.5,.5)
epsb <- runif(n,-1,1)

x1 <- epsi

X2 <- eps2

x3 <- x1 + x2 + eps3
x4 <- 3*x1 + eps4
x5 <- 2*x3 + epsb

data <- cbind(x1,x2,x3,x4,x5)
dataframe <- data.frame(data)

# apply LiNGAM

lingam.fit <- lingam(data)
round(lingam.fit$Bpruned,1)

[,11 [,2]1 [,3] [,4] [,5]

[1,] 0.0 0 0.0 0 0

[2, 0.0 0 0.0 0 0

[3,] 1.1 1 0.0 0 0

[4,1 3.0 0 0.0 0 0

N 0.0 0 1.9 0 0
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LINGAM in R

# Gaussian errors
n <- 1000

epsl <- rnorm(n,0,1)
eps2 <- rnorm(n,0,2)
eps3 <- rnorm(n,0,.7)
eps4 <- rnorm(n,0,1.5)
eps5 <- rnorm(n,0,1)

x1 <- epsl

x2 <- eps2

x3 <- x1 + x2 + eps3
x4 <- 3*x1 + eps4d

x5 <- 2xx3 + epsb

data <- cbind(x1,x2,x3,x4,x5)
dataframe <- data.frame(data)

# apply LiNGAM (although errors are Gaussian)

lingam.fit <- lingam(data)
round(lingam.fit$Bpruned,1)

[,11 [,2]1 [,3] [,4] [,5]

[1,] 0.0 0 0.2 0 0
[2,] -0.9 0 0.9 0 0
[3,1 0.0 0 0.0 0 0
[4,] 3.0 0 0.0 0 0
[5,1 0.0 0o 1.9 0 0
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RESIT!: bivariate setting

RESIT stands for Regression with Subsequent Independence Test

Given variables X and Y, assume Y is caused by X and noise N through the
additive noise model

Y=fX)+N
The algorithm

O fits a regression model (possibly non-linear) to estimate f(X) from X to Y

@ tests for independence between X and the residuals N = Y — f(X) using
an independence test like the Hilbert—Schmidt Independence Criterion
(HSIC); see Appendix A.2 in Elements of Causal Inference

© repeats the first two steps exchanging the roles of X and Y

If independence is not rejected for one direction and rejected for the other, infer
the former as the causal direction

@ Causality is assumed and algorithm finds the correct direction

@ In practice, inferred causal direction is the one with the highest p-value
1

see original paper
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https://library.oapen.org/bitstream/id/056a11be-ce3a-44b9-8987-a6c68fce8d9b/11283.pdf
https://jmlr.org/papers/volume15/peters14a/peters14a.pdf

RESIT in R: Linear model with non-Gaussian noise

library (dHSIC)
library(mgcv)
set.seed(1)

### RESIT: Regression with subsequent independence test
n <- 500

## Linear model with uniform noise
eps_cause <- runif(n, -1.732051, 1.732051)
eps_effect <- runif(n, -1.03923, 1.03923)

C <- eps_cause
E <- 0.8%C + eps_effect

# fit model in forward direction

fit_causal <- 1m(E~C)

residuals_causal <- fit_causal$residuals

# test whether residuals are independent of C

# dhsic.test(residuals_causal, C)$p.value # 0.9470529

# fit model in backward direction

fit_anticausal <- 1m(C~E)

residuals_anticausal <- fit_anticausal$residuals

# test whether residuals are independent of E

# dhsic.test(residuals_anticausal, E)$p.value # 0.000999001
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RESIT in R: Linear model with non-Gaussian noise

Residuals of regression of E on C.

Linear regression: E ~ C

Linear regression: C ~ E
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RESIT in R: Non-linear model with Gaussian noise

## Nonlinear model with Gaussian notise
set.seed(1)
n <- 500

eps_cause <- rnorm(n)
eps_effect <- rnorm(n)

C <- eps_cause
E <- C™3 + eps_effect

# fit model in forward direction

fit_causal <- gam(E~s(C))

residuals_causal <- fit_causal$residuals

# test whether residuals are independent of C

# dhsic.test(residuals_causal, C)$p.value # 0.971029

# fit model in backward direction

fit_anticausal <- gam(C~s(E))

residuals_anticausal <- fit_anticausal$residuals

# test whether residuals are independent of E

# dhsic.test(residuals_anticausal, E)$p.value # 0.000999001
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RESIT in R: Non-linear model with Gaussian noise

Nonlinear regression: E ~C Nonlinear regression: C ~ E
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RESIT in R: Linear model with Gaussian noise

## Nonlinear model with Gaussian notise
set.seed(1)
n <- 500

eps_cause <- rnorm(n)
eps_effect <- rnorm(n)

C <- eps_cause
E <- 3*C + eps_effect

# fit model in forward direction

fit_causal <- 1m(E~C)

residuals_causal <- fit_causal$residuals

# test whether residuals are independent of C

# dhsic.test(residuals_causal, C)$p.value # 0.9330669

# fit model in backward direction

fit_anticausal <- 1m(C~E)

residuals_anticausal <- fit_anticausal$residuals

# test whether residuals are independent of E

# dhsic.test(residuals_anticausal, E)$p.value # 0.8531469
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RESIT in R: Linear model with Gaussian noise

Residuals of regression of E on C.
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Linear regression: E ~ C

Linear regression: C ~ E
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RESIT: Extension to multivariate setting

Idea: Handling more than two variables by repeating bivariate tests

For each sink node X, it holds that ¢; . X\{X,}

@ lterative approach for finding sink nodes (nodes with no children)

1. Regress each variable on all other remaining variables

2. Measure independence of residuals from the regression model with the
regressors

3. The variable X with the least dependent residuals ¢, is deemed a sink node

@ With the sink nodes isolated, a topological order and a connected DAG are
obtained

4. Remove superfluous edges based on the independence of the residuals

o an edge from X; to X is removed if the residuals X; — f(XPa(jN)
are independent of XPa(j)\i
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RESIT: Extension to multivariate setting

Note: Guarantees (consistency) for the performance of RESIT can be
obtained under certain conditions (causal minimality)

Note: RESIT does not scale well to high dimensions as the step of edges’
removal might depend on the order
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Causal structure learning: summary

X AL (X1,X3)

X LX) X _
independence X L %% faithfulness and

g/
tests X L X | X Markov \

i.i.d. sample
from Py, .. x,

Ni,...,N4 independent

credit: Elements of Causal Inference
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Software packages & References

e Software packages/source code relevant to causal discovery and
available online can be found here

@ Review papers
e Glymour, Zhang, and Spirtes (2019)
e Mooij et al. (2016)

@ Books
o Peters, Janzing, and Schélkopf (2017)
o Spirtes et al., 2000
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