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Section 1

Introduction
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Causal inference: What is the effect of the cause?

Aim: focuses on determining the effect of one variable on another, based
on observational or experimental/interventional data, and a given set of
assumptions

Purpose: To estimate the effect of interventions or treatments
Methods: Randomized trials, matching, regression, instrumental
variables
Challenge: Controlling for confounding variables

References:

Pearl (2000), second edition (2009)

Hernàn and Robins (2020)
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https://www.hsph.harvard.edu/miguel-hernan/wp-content/uploads/sites/1268/2024/01/hernanrobins_WhatIf_2jan24.pdf


Causal discovery: What is the cause of the effect?

Aim: uncovers the underlying causal structure of a dataset without
necessarily having prior knowledge of the relationships between variables

Purpose: To identify potential causal relationships among multiple
variables
Methods: To follow
Challenge: Determining the direction of causation from observational
data alone

References: To follow
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Introduction: What to do when concerned with causal
relationships?

Controlled experiments can be expensive, time-consuming, unethical,
impractical, or even infeasible

Intriguing alternative: causal discovery from purely observational data
Spirtes et al., 2000 and Pearl (2000), second edition (2009)

Question: Do observational data from 𝑝(𝑋, 𝑌 ) suffice to identify the
direction of causality between 𝑋 and 𝑌 ?

Answer: No, generally…
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Introduction

Proposition (Non-unique Graphs)
For any joint distribution 𝑝(𝑋, 𝑌 ), there exists a Structural Equation
Model (SEM):

𝑌 = 𝑔𝑌 (𝑋, 𝜖𝑌 ), 𝑋 is independent of 𝜖𝑌 ,
where 𝑔𝑌 is a measurable function and 𝜖𝑌 is a random variable (noise)

Proof: Consider 𝑔𝑌 (𝑥, 𝜖) = 𝐹 −1
𝑌 ∣𝑋=𝑥(𝜖), where 𝜖 ∼ 𝒰(0, 1) and 𝜖 is

independent of 𝑋
⇒ Every joint distribution 𝑝(𝑋, 𝑌 ) admits SEMs in both possible causal
directions, unless restrictions are imposed on 𝑔𝑌 and/or on the noise 𝜖𝑌
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Introduction
Learn causal structure directly from statistical properties (e.g., conditional
independencies) of observational data

Methods:
Constraint-based methods: Identify conditional independencies and
use them to infer causal structure

PC Algorithm or Fast Causal Inference (Spirtes, Glymour and Scheines,
2000)

Restricted models methods: Impose additional assumptions on
model class, noise distributions, causal function

RESIT (Peters et al., 2014) or LiNGAM (Shimizu et al., 2006)
Score-based methods: Evaluate how well a causal model fits the data
using a scoring function (penalized likelihood or log-posterior)

Greedy Equivalence Search (GES) of Chickering, 2003
Challenges:

Underlying assumptions (e.g., no hidden confounders, correct model
specification)
Computational complexity and feasibility in high-dimensional spaces
Reliability of conclusions drawn from purely observational data
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Section 2

Definitions
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Concepts of graphs
Definition (Graph)
A graph 𝒢 is a pair (X, 𝐸) where:

X = {𝑋1, … , 𝑋𝑝} is the set of vertices
𝐸 ⊆ {(𝑋𝑖, 𝑋𝑗) ∈ X2|𝑖 ≠ 𝑗} is the set of edges

A path is a sequence of edges such as < (𝑋1𝑋2)(𝑋2𝑋3) ⋯ (𝑋𝑘−1𝑋𝑘) >
Definition (Directed Graph)
A directed graph 𝒢 is a pair (X, 𝐸) where:

X = {𝑋1, … , 𝑋𝑝} is the set of vertices
𝐸 ⊆ {(𝑋𝑖, 𝑋𝑗)→ ∈ X2|𝑖 ≠ 𝑗} is the set of arcs. An arc (𝑋𝑖𝑋𝑗)→ is
a directed edge from 𝑋𝑖 to 𝑋𝑗

A cycle is a directed path from and to the same vertex, e.g.,
< (𝑋1𝑋2)→, (𝑋2𝑋3)→, ⋯ , (𝑋𝑘𝑋1)→ >
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Concepts of graphs
A directed acyclic graph (DAG) is a directed graph without cycles

The vertices of a DAG 𝒢 represent random variables described by parent-child
relationships:

Pa(𝑖) = {𝑋𝑗 ∶ (𝑋𝑗𝑋𝑖)→ is an edge of 𝒢} (parent)
Ch(𝑖) = {𝑋𝑗 ∶ (𝑋𝑖𝑋𝑗)→ is an edge of 𝒢} (child)
An(𝑖) = {𝑋𝑗 ∶ 𝑋𝑗 → 𝑋𝑘 → ⋯ 𝑋𝑙 → 𝑋𝑖 is a directed path of 𝒢} (ancestor)
De(𝑖) = {𝑋𝑗 ∶ 𝑋𝑖 → 𝑋𝑘 → ⋯ 𝑋𝑙 → 𝑋𝑗 is a directed path of 𝒢}
(descendant)
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Definition of 𝑑-separation

Given a path 𝑋1𝑋2 … 𝑋𝑚−1𝑋𝑚, we say 𝑋ℓ is a collider (relative to the path) if
𝑋ℓ−1 → 𝑋ℓ ← 𝑋ℓ+1.

The path is blocked by a set of nodes 𝑆 with 𝑋1, 𝑋𝑚 ∉ 𝑆 if for some
ℓ ∈ {2, … , 𝑚 − 1} either:

𝑋ℓ is not a collider and 𝑋ℓ ∈ 𝑆, or
𝑋ℓ is a collider and neither 𝑋ℓ nor any of its descendants are in 𝑆

Definition
Given disjoint subsets of nodes 𝐴, 𝐵 and 𝑆, we say 𝐴 and 𝐵 are d-separated by
𝑆, and write:

𝐴 ⟂⟂𝒢 𝐵 ∣ 𝑆,
if every path between 𝐴 and 𝐵 is blocked by 𝑆
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Structural Causal Models: The link between distributions
and graphs!
A structural causal model (SCM) is a system of equations:

𝑋𝑗 ∶= ℎ𝑗(𝑋𝑃𝑗
, 𝜀𝑗)

where:

𝜀1, … , 𝜀𝑝 are independent noise variables
𝑃𝑗 ⊆ 𝑉 ∖ {𝑗} are such that the graph with 𝑃𝑗 = 𝑝𝑎(𝑗) is a DAG

Causal ordering: Given a DAG 𝒢, a bijective mapping 𝜋

𝜋 ∶ {1, … , 𝑝} → {1, … , 𝑝}

is said to be a causal ordering of the variables if it satisfies

𝜋(𝑖) < 𝜋(𝑗) if 𝑗 ∈ De(𝑖)
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Definitions

Markov condition: Conditional on the set of all its parent nodes, a node is
independent of all other non-descendants nodes. Under the Markov
condition, the joint probability satisfies

Pr(𝑋1, 𝑋2, … , 𝑋𝑝) =
𝑝

∏
𝑖=1

Pr(𝑋𝑖 ∣ Pa(𝑖))

⇒ connects a distribution and a causal DAG
Global Markov condition: 𝐴 ⟂⟂𝒢 𝐵 ∣ 𝑆 ⟹ 𝑋𝐴 ⟂⟂ 𝑋𝐵 ∣ 𝑋𝑆, for all
disjoint sets of vertices 𝐴, 𝐵, and 𝑆
Markov equivalence class: A class of DAGs that encode the same
conditional independence relationships among a set of variables
⇒ while graphs in this class may have different structures, they entail the
same set of conditional independencies

Proposition (valid in a DAG that generates 𝑃 )
If 𝑋𝑗 ⟂⟂/ 𝑋𝑘 ∣ 𝑋𝐴 for every 𝐴 ⊆ 𝑉 ∖ {𝑗, 𝑘}, then either 𝑋𝑗 → 𝑋𝑘 or 𝑋𝑗 ← 𝑋𝑘
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Section 3

Constraint-based
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The PC algorithm

The classic PC (Peter–Clark) algorithm was introduced by Spirtes,
Glymour and Scheines (2000), Section 5.4.2. The algorithm assumes
specific statistical assumptions

Assumptions: The key assumptions of the PC algorithm are:

Causal sufficiency: There are no hidden confounders
Faithfulness: Conditional independencies in the data imply
conditional independencies in the DAG
Markov condition: A variable is conditionally independent of its
non-descendants given its parents in the DAG

The algorithm

measures conditional independencies in the (observational) data

searches for graph which satisfies the assumptions ⇒ we only get
identifiability up to the Markov equivalence class
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The PC algorithm

Algorithm
1. Start with a fully connected undirected graph
2. Test for conditional independence among all pairs and subsets of variables,

i.e., test 𝑋 ⟂ 𝑌 ∣ 𝑍 for varying sets 𝑍
3. Remove edges based on the outcomes of conditional independence tests
4. Continue until no more edges can be removed without violating the

conditional independencies observed in the data
5. Apply orientation rules (v-structures, collider, etc.) to orient as many

undirected edges as possible
6. Make final adjustments to prevent cycles and ensure the graph remains

acyclic

The Rank PC algorithm, proposed by Harris and Drton (2013), is an extension of
the PC algorithm and uses the rank-based Spearman correlation to perform the
independence tests ⇒ more robust to non-Gaussian data
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The PC algorithm with Gaussian data
In the multivariate Gaussian setting, testing conditional independence is
equivalent to testing for zero partial correlation:

Hypothesis testing:
Null hypothesis 𝐻0 ∶ 𝜌𝑋𝑌 ∣𝑆 = 0
Alternative hypothesis 𝐻𝐴 ∶ 𝜌𝑋𝑌 ∣𝑆 ≠ 0

Significance level 𝛼:
Serves as a tuning parameter for the PC algorithm

Note I: performance of the algorithm depends on the validity of the assumptions
but mostly on the correctness of the independence tests

Consistency: Under the specified assumptions, if the conditional independence
decisions are correct (e.g., use an oracle independence test), the PC algorithm is
guaranteed to converge to the true Markov equivalence class

Note II: If Gaussianity assumed, conditional independencies ⟺ non-zero coefs
from a linear regression of 𝑋𝑖 on 𝑋−𝑖. Generally, compute 𝔼 Cov(𝑋, 𝑌 ∣ 𝑍) and
use generalised covariance measure + double machine learning
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The PC algorithm: Example

library(pcalg)
n <- 1000
set.seed(222)

eps1 <- rnorm(n,0,1)
eps2 <- rnorm(n,0,2)
eps3 <- rnorm(n,0,.7)
eps4 <- rnorm(n,0,1.5)
eps5 <- rnorm(n,0,1)

x1 <- eps1
x2 <- eps2
x3 <- x1 + x2 + eps3
x4 <- 2*x1 + eps4
x5 <- 3*x3 + eps5

data <- cbind(x1,x2,x3,x4,x5)
data <- data.frame(data)

pc.fit <- pc(suffStat = list(C = cor(data), n = n),
indepTest = gaussCItest,
labels = names(data),
alpha = 0.01, verbose = FALSE)

plot(pc.fit@graph)
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The PC algorithm: Example

x1x2

x3 x4

x5
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Section 4

Restricted Models
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Linear model with additive noise

Consider the linear structural equation model

X = 𝐵X + 𝜀, with 𝐵 ∈ ℝ𝑝×𝑝, X ∈ ℝ𝑝, 𝜀 ∈ ℝ𝑝

Gaussian noise ⇒ cannot distinguish between Markov equivalent
graphs

different matrices 𝐵 can generate the same distribution of 𝑋, which is
Gaussian and completely determined by mean and covariance

Non-Gaussian data
not fully determined by mean and covariance ⇒ structure becomes
identifiable
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Linear model with additive Gaussian noise
Hypothesis: The cause 𝑋 has a linear effect on 𝑌 . More precisely:

𝑌 = 𝛼𝑋 + 𝜖𝑌 , 𝜖𝑌 is independent of 𝑋,

where 𝛼 ∈ ℝ.
Theorem
Let 𝑋 and 𝑌 be two continuous random variables whose joint distribution
𝑝(𝑋, 𝑌 ) satisfies:

𝑌 = 𝛼𝑋 + 𝜖𝑌 , 𝜖𝑌 is independent of 𝑋
Then, there exists 𝛽 in ℝ and a continuous random variable 𝜖𝑋 such that:

𝑋 = 𝛽𝑌 + 𝜖𝑋, 𝜖𝑋 is independent of 𝑌 ,
if and only if 𝑋 and 𝜖𝑌 are Gaussian

→ It is sufficient that the noise or the effect is non-Gaussian to identify the causal
direction
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LiNGAM: Linear non-Gaussian acyclic models

LiNGAM assumes

acyclicity ⇒
a causal ordering exists (might not be unique)

the diagonal elements of 𝐵 are zero (no self-loops)

using a causal ordering makes 𝐵 strictly lower triangular

𝜖 is mean-zero non-Gaussian with positive variance
noise components are mutually independent, i.e., no hidden variables

Goal: Based on 𝑛 i.i.d. observations of X, estimate 𝐵 or equivalently,
learn the DAG (asnon-zeros in 𝐵 are edges in the DAG)
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LiNGAM: Linear non-Gaussian acyclic models

LiNGAM can be written as

X = 𝐵X + 𝜀
X = (𝐼 − 𝐵)−1𝜀

⇒ use Independent component analysis (ICA) to estimate/identify (𝐼 − 𝐵)−1

and hence 𝐵
ICA model: X = 𝐴S
- X ∈ ℝ𝑝: observed variables
- S ∈ ℝ𝑝: independent and continuous non-Gaussian variables
- 𝐴 ∈ ℝ𝑝×𝑝: unobserved full rank matrix
If S is non-Gaussian, then 𝐴 is identifiable up to permutation, scaling and sign of
the columns

⇒ Properties of 𝐵 are exploited to find the “correct” permutation
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ICA-LiNGAM algorithm

1 Given 𝑛 i.i.d. observations of X, use ICA to estimate
𝑊 = 𝐴−1 = (𝐼 − 𝐵) (up to permutation, scaling and sign of the
columns of the “true 𝐴”)

2 Find unique permutation of the rows of 𝑊 that yields 𝑊 without any
zeros on the diagonal

3 Divide each row of 𝑊 by its diagonal element to yield 𝑊 ′ with only
ones on the diagonal

4 Compute 𝐵̂ = 𝐼 − 𝑊 ′

5 Find causal order by making 𝐵̃ = ̃𝑃 𝐵̂ ̃𝑃 𝑇 as close as possible to
strictly lower triangular (prune edge weights, e.g. using sparse
regression or significance testin)

Note I: ICA-based algorithms may get stuck in local optima

Note II: Alternative method is DirectLiNGAM (guaranteed convergence as
𝑛 → ∞)
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LiNGAM in R
require(pcalg)
require(igraph)

### Linear SEM with uniform errors
n <- 1000

eps1 <- runif(n,-.5,.5)
eps2 <- runif(n,-.3,3)
eps3 <- runif(n,-.7,.7)
eps4 <- runif(n,-.5,.5)
eps5 <- runif(n,-1,1)

x1 <- eps1
x2 <- eps2
x3 <- x1 + x2 + eps3
x4 <- 3*x1 + eps4
x5 <- 2*x3 + eps5

data <- cbind(x1,x2,x3,x4,x5)
dataframe <- data.frame(data)

# apply LiNGAM
lingam.fit <- lingam(data)
round(lingam.fit$Bpruned,1)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0 0.0 0 0
[2,] 0.0 0 0.0 0 0
[3,] 1.1 1 0.0 0 0
[4,] 3.0 0 0.0 0 0
[5,] 0.0 0 1.9 0 0
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LiNGAM in R

# Gaussian errors
n <- 1000

eps1 <- rnorm(n,0,1)
eps2 <- rnorm(n,0,2)
eps3 <- rnorm(n,0,.7)
eps4 <- rnorm(n,0,1.5)
eps5 <- rnorm(n,0,1)

x1 <- eps1
x2 <- eps2
x3 <- x1 + x2 + eps3
x4 <- 3*x1 + eps4
x5 <- 2*x3 + eps5

data <- cbind(x1,x2,x3,x4,x5)
dataframe <- data.frame(data)

# apply LiNGAM (although errors are Gaussian)
lingam.fit <- lingam(data)
round(lingam.fit$Bpruned,1)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0 0.2 0 0
[2,] -0.9 0 0.9 0 0
[3,] 0.0 0 0.0 0 0
[4,] 3.0 0 0.0 0 0
[5,] 0.0 0 1.9 0 0

Linda Mhalla Week 5: Causal Discovery from Observational Data 2025-03-17 27 / 39



RESIT1: bivariate setting
RESIT stands for Regression with Subsequent Independence Test

Given variables 𝑋 and 𝑌 , assume 𝑌 is caused by 𝑋 and noise 𝑁 through the
additive noise model

𝑌 = 𝑓(𝑋) + 𝑁
The algorithm

1 fits a regression model (possibly non-linear) to estimate ̂𝑓(𝑋) from 𝑋 to 𝑌
2 tests for independence between 𝑋 and the residuals ̂𝑁 = 𝑌 − ̂𝑓(𝑋) using

an independence test like the Hilbert–Schmidt Independence Criterion
(HSIC); see Appendix A.2 in Elements of Causal Inference

3 repeats the first two steps exchanging the roles of 𝑋 and 𝑌

If independence is not rejected for one direction and rejected for the other, infer
the former as the causal direction

Causality is assumed and algorithm finds the correct direction
In practice, inferred causal direction is the one with the highest 𝑝-value

1see original paper
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RESIT in R: Linear model with non-Gaussian noise

library(dHSIC)
library(mgcv)
set.seed(1)

### RESIT: Regression with subsequent independence test
n <- 500

## Linear model with uniform noise
eps_cause <- runif(n, -1.732051, 1.732051)
eps_effect <- runif(n, -1.03923, 1.03923)

C <- eps_cause
E <- 0.8*C + eps_effect

# fit model in forward direction
fit_causal <- lm(E~C)
residuals_causal <- fit_causal$residuals
# test whether residuals are independent of C
# dhsic.test(residuals_causal, C)$p.value # 0.9470529

# fit model in backward direction
fit_anticausal <- lm(C~E)
residuals_anticausal <- fit_anticausal$residuals
# test whether residuals are independent of E
# dhsic.test(residuals_anticausal, E)$p.value # 0.000999001
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RESIT in R: Linear model with non-Gaussian noise
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RESIT in R: Non-linear model with Gaussian noise

## Nonlinear model with Gaussian noise
set.seed(1)
n <- 500

eps_cause <- rnorm(n)
eps_effect <- rnorm(n)

C <- eps_cause
E <- C^3 + eps_effect

# fit model in forward direction
fit_causal <- gam(E~s(C))
residuals_causal <- fit_causal$residuals
# test whether residuals are independent of C
# dhsic.test(residuals_causal, C)$p.value # 0.971029

# fit model in backward direction
fit_anticausal <- gam(C~s(E))
residuals_anticausal <- fit_anticausal$residuals
# test whether residuals are independent of E
# dhsic.test(residuals_anticausal, E)$p.value # 0.000999001
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RESIT in R: Non-linear model with Gaussian noise
Nonlinear regression: E ~ C
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RESIT in R: Linear model with Gaussian noise

## Nonlinear model with Gaussian noise
set.seed(1)
n <- 500

eps_cause <- rnorm(n)
eps_effect <- rnorm(n)

C <- eps_cause
E <- 3*C + eps_effect

# fit model in forward direction
fit_causal <- lm(E~C)
residuals_causal <- fit_causal$residuals
# test whether residuals are independent of C
# dhsic.test(residuals_causal, C)$p.value # 0.9330669

# fit model in backward direction
fit_anticausal <- lm(C~E)
residuals_anticausal <- fit_anticausal$residuals
# test whether residuals are independent of E
# dhsic.test(residuals_anticausal, E)$p.value # 0.8531469
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RESIT in R: Linear model with Gaussian noise
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RESIT: Extension to multivariate setting
Idea: Handling more than two variables by repeating bivariate tests

For each sink node 𝑋𝑖, it holds that 𝜖𝑖 ⟂⟂ X\{𝑋𝑖}

Iterative approach for finding sink nodes (nodes with no children)

1. Regress each variable on all other remaining variables
2. Measure independence of residuals from the regression model with the

regressors
3. The variable 𝑋𝑘 with the least dependent residuals 𝜖𝑘 is deemed a sink node

With the sink nodes isolated, a topological order and a connected DAG are
obtained

4. Remove superfluous edges based on the independence of the residuals
an edge from 𝑋𝑖 to 𝑋𝑗 is removed if the residuals 𝑋𝑗 − ̂𝑓(X𝑃𝑎(𝑗)\𝑖)
are independent of X𝑃𝑎(𝑗)\𝑖
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RESIT: Extension to multivariate setting

Note: Guarantees (consistency) for the performance of RESIT can be
obtained under certain conditions (causal minimality)

Note: RESIT does not scale well to high dimensions as the step of edges’
removal might depend on the order
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Causal structure learning: summary

credit: Elements of Causal Inference
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Section 5

References
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Software packages & References

Software packages/source code relevant to causal discovery and
available online can be found here

Review papers
Glymour, Zhang, and Spirtes (2019)

Mooij et al. (2016)

Books
Peters, Janzing, and Schölkopf (2017)

Spirtes et al., 2000
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