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Introduction

The goal today is to show how the linear regression model can be adapted
to account for dependence between observations

Consider a random vector Y of dimension 𝑛

such a vector would usually comprise of repeated measures on an
individual, or even observations from a group of individuals

When independence fails, the estimated standard errors of the
coefficients of the linear model are too small ⇒ reject the null
hypothesis more often then we should if the null is true (inflated Type I
error, false positives)

Need to account for within-group correlations, i.e., model a covariance
matrix for observations within the same group (or within the same
individual in the case of repeated measures)
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Introduction

Longitudinal studies on independent subjects

Measurements are taken from the same individuals, usually over time

These data are termed repeated measures or longitudinal data, but
econometricians use the vocable panel data

The individuals are independent from one another; however,
measurements from the same subject are not independent

Studies on subjects that are not independent

Subjects are sampled within a group

subjects sampled from the same household

subjects sampled from within several businesses

subjects sampled within schools, hospitals, etc
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Introduction
We can always consider correlated data as grouped data, where there is
within-group correlation

In longitudinal data, we have several records for each individual
In other examples, the groups could be households, schools, hospitals,
businesses, etc.

subject 1
subject 2

subject 3

Repeated measurements

group 1
group 2

group 3

Different subjects

One dot equals one line in the data file
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What happens if we ignore within-group correlation?

Suppose that we have grouped data and we perform a one-sample 𝑡-test
with level 𝛼 = 5%
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Type I error probability increases with correlation, as well as with the
number of samples within each group ⇒ statistical inference is typically no
longer valid …
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Example: Tree growth

log-size (log-height+2log-diameter) of 79 (Sitka spruce) trees
measured repeatedly in about 1-month intervals
each tree measured 5-times
54 trees grown in ozone-enriched environment (treat=1) and 25 were
control

size time tree treat
1 4.51 152 1 ozone
2 4.98 174 1 ozone
3 5.41 201 1 ozone
4 5.90 227 1 ozone
5 6.15 258 1 ozone
6 4.24 152 2 ozone
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Example: Spaghetti plot
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152 174 201 227 258

Spaghetti plot that shows 79 curves (one for each tree)

The size seems to increase with time, on average. The increase could
be linear!
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Section 1

Linear model with correlated errors
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Notations

Suppose that we collect observations from 𝑚 groups such that:
There are 𝑛𝑖 observations within group 𝑖 (𝑖 = 1, … , 𝑚)
Any two observations from the same group are possibly correlated
Any two observations from different groups are assumed independent

Groups can be formed in several ways:
Several measures can be taken from the same subject (repeated
measures) and each individual forms a group
A group could also consist of individuals from the same school,
department, or family

We use the index 𝑖 to indicate the group, and 𝑗 to indicate an
observation within a group

Y𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)⊤ the outcome variable for group 𝑖

X𝑖𝑗 = (1, X𝑖𝑗1, … , X𝑖𝑗𝑝)⊤ the set of 𝑝 explanatory variables for
observation 𝑗 in group 𝑖
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Linear model with correlated errors

The linear regression model is

𝑌𝑖𝑗 = 𝛽0 + 𝛽1X𝑖𝑗1 + ⋯ + 𝛽𝑝X𝑖𝑗𝑝 + 𝜀𝑖𝑗

for 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑛𝑖, where 𝜀𝑖𝑗 is the error term for
observation 𝑗 in group 𝑖

We assume that 𝔼(𝜀𝑖𝑗 ∣ X𝑖𝑗) = 0 and therefore

𝔼(𝑌𝑖𝑗 ∣ X𝑖) = 𝛽0 + 𝛽1X𝑖𝑗1 + ⋯ + 𝛽𝑝X𝑖𝑗𝑝

However, we no longer assume that the error terms are independent, i.e., 𝜀
and hence Y (when X is fixed) are assumed correlated
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Linear model with correlated errors
We assume the groups are independent from one another, so
Cov(𝜖𝑖𝑗, 𝜖𝑖′𝑗′) = 0 if 𝑖 ≠ 𝑖′

We model the within-group correlation by assuming that the
covariance matrix of Y for group 𝑖 is

Cov(Y𝑖 ∣ X𝑖) = Cov(𝜀𝑖 ∣ X𝑖) = Σ𝑖,

where 𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑛𝑖
) is the vector of errors for group 𝑖

Assuming data re ordered by group, the full covariance matrix is
block-diagonal

Cov(Y) =
⎛⎜⎜⎜
⎝

Σ1 O ⋯ O
O Σ2 ⋯ O
⋮ ⋱ ⋱ ⋮

O O ⋯ Σ𝑚

⎞⎟⎟⎟
⎠
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Covariance structures

Compound symmetry: observations within a group are interchangeable

Σ𝑖 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜎2 + 𝜏 𝜏 𝜏 𝜏 𝜏
𝜏 𝜎2 + 𝜏 𝜏 𝜏 𝜏
𝜏 𝜏 𝜎2 + 𝜏 𝜏 𝜏
𝜏 𝜏 𝜏 𝜎2 + 𝜏 𝜏
𝜏 𝜏 𝜏 𝜏 𝜎2 + 𝜏

⎞⎟⎟⎟⎟⎟⎟
⎠

Auto-regressive structure AR(1): magnitude of correlation depends on
amount of time between observations

R𝑖 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 𝜌 𝜌2 𝜌3 𝜌4

𝜌 1 𝜌 𝜌2 𝜌3

𝜌2 𝜌 1 𝜌 𝜌2

𝜌3 𝜌2 𝜌 1 𝜌
𝜌4 𝜌3 𝜌2 𝜌 1

⎞⎟⎟⎟⎟⎟⎟
⎠

, with Σ𝑖 = 𝜎2R𝑖
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Covariance structures

Heterogeneous AR structure ARH(1): same correlation matrix as AR(1) but
covariance matrix

Σ𝑖 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜎2
1 𝜎1𝜎2𝜌 𝜎1𝜎3𝜌2 𝜎1𝜎4𝜌3 𝜎1𝜎5𝜌4

𝜎2𝜎1𝜌 𝜎2
2 𝜎2𝜎3𝜌 𝜎2𝜎4𝜌2 𝜎2𝜎5𝜌3

𝜎3𝜎1𝜌2 𝜎3𝜎2𝜌 𝜎2
3 𝜎3𝜎4𝜌 𝜎3𝜎5𝜌2

𝜎4𝜎1𝜌3 𝜎4𝜎2𝜌2 𝜎4𝜎3𝜌 𝜎2
4 𝜎4𝜎5𝜌

𝜎5𝜎1𝜌4 𝜎5𝜎2𝜌3 𝜎5𝜎3𝜌2 𝜎5𝜎2𝜌 𝜎2
5

⎞⎟⎟⎟⎟⎟⎟
⎠

Unstructured covariance matrix …

Tree growth example: we get 15 parameters under the unstructured model,
compared to two parameters for the compound symmetry and the AR(1)
covariance models, and to six for the ARH(1) covariance model
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Comparing covariance structures

Many models are nested so use formal likelihood ratio tests whenever
possible for comparisons

e.g., independence ≺ AR(1) ≺ ARH(1) ≺ unstructured

Using AIC or BIC to compare models is valid provided the mean
model includes the same variables

When inference relies on ML (rather than REML), AIC and BIC can be
used to compare models with different variables for the mean

Details on inference to follow …
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Exploring covariance structures

For visualization, consider the residuals 𝑟𝑖𝑗 = 𝑦𝑖𝑗 − x⊤
𝑖𝑗𝛽̂, where x𝑖𝑗 is

the covariate vector for the 𝑗-th measurement of the 𝑖-th subject and 𝛽̂
is estimated by a linear regression ignoring the correlation

Alternative 1: display the correlation as scatterplot of 𝑟𝑖𝑗 vs. 𝑟𝑖𝑘 for
each pair (𝑗, 𝑘) (for equidistant and equal (or binned) time points 𝑡𝑗 )
Alternative 2: plot products 𝑟𝑖𝑗𝑟𝑖𝑘, as estimates of the residual
covariance, against their time distance ∣𝑡𝑖𝑗 − 𝑡𝑖𝑘∣

The data should always be displayed graphically before beginning with
the analysis

Graphics should be chosen appropriately to the data and questions at
hand!

Exploring the mean and correlation is helpful for model building
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Section 2

Linear Mixed Effect Models

Linda Mhalla Week 7: Linear Mixed Models 2025-03-31 16 / 38



Introduction: Tree growth example

So far, we have only accounted for group structure by modelling the
within-group correlation

We may also want to include a group/individual effect in the mean model,
e.g., a different intercept (and/or slope) for each group/individual

Suppose that the tree growth is approximately linear

𝑌𝑖𝑗 = 𝛽𝑖1 + 𝛽𝑖2𝑡𝑖𝑗 + 𝛽3Treat𝑖 + 𝜖𝑖𝑗, 𝜖𝑖 ∼ 𝒩𝑛𝑖
(0, Σ𝑖)

The effect of Treat is not identifiable …

Collinearity issues: a variable fixed in time is perfectly collinear with the
group/individual variable

We cannot have a fixed effect for each tree while simultaneously including
variables that are fixed in time (ozone treatment)
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Introduction: A two-stage approach

Stage 1: Separate linear models for each tree 𝑖, i.e., assume the growth of each
tree is approximately linear with tree-specific intercepts and slopes:

𝑌𝑖𝑗 = 𝛽𝑖1 + 𝛽𝑖2𝑡𝑖𝑗 + 𝜖𝑖𝑗, 𝜖𝑖 ∼ 𝒩𝑛𝑖
(0, Σ𝑖)

With Y𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)

𝑇
, 𝛽𝑖 = (𝛽𝑖1, 𝛽𝑖2)𝑇 and

Z𝑖 = ( 1 1 … 1 … 1
𝑡𝑖1 𝑡𝑖2 … 𝑡𝑖𝑗 … 𝑡𝑖𝑛𝑖

)
𝑇

and with distributional assumption (normality), we can write this as

Y𝑖 = Z𝑖𝛽𝑖 + 𝜖𝑖, 𝜖𝑖 ∼ 𝒩𝑛𝑖
(0, Σ𝑖)
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Introduction: A two-stage approach
Stage 2: Regression model for the coefficients 𝛽𝑖 = (𝛽𝑖1, 𝛽𝑖2)𝑇

𝛽𝑖1 = 𝛽1 + 𝛽2Treat𝑖 + 𝑏𝑖1, 𝛽𝑖2 = 𝛽3 + 𝛽4Treat𝑖 + 𝑏𝑖2,

i.e., 𝛽𝑖1 and 𝛽𝑖2 are tree-specific intercepts and slopes depending on ozone
treatment Treat𝑖, and 𝑏𝑖1 and 𝑏𝑖2 are residual terms

With 𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4)𝑇, b𝑖 = (𝑏𝑖1, 𝑏𝑖2)𝑇 ∼ 𝒩2 (0, D), and

K𝑖 = ( 1 Treat𝑖 0 0
0 0 1 Treat𝑖

)

and with distributional assumption, the second-stage model is

𝛽𝑖 = K𝑖𝛽 + b𝑖, b𝑖 ∼ 𝒩2 (0, D)

⇒ systematic differences between treated and control trees

⇒ individual intercepts/slopes that are normally distributed around their treatment
means
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Introduction: A two-stage approach
The resulting combined model is

Y𝑖 = Z𝑖K𝑖𝛽 + Z𝑖b𝑖 + 𝜖𝑖, b𝑖 ∼ 𝒩2(0, D) ⟂⟂ 𝜖𝑖 ∼ 𝒩0, Σ𝑖)
= X𝑖𝛽 + Z𝑖b𝑖 + 𝜖𝑖

Disadvantages:

We often have few observations per group/individual to estimate 𝛽𝑖

Uncertainty assessment is tricky as plug-in estimate 𝛽̂𝑖 replaces 𝛽𝑖 in
second-stage model

Conclusion:

Combining both models in one model seems more adequate → the combined
model is the linear mixed model

𝛽 are called fixed effects: population effects
The residuals b𝑖 are normally distributed and are termed the random effects:
group/individual-specific effects
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The linear mixed model

Y𝑖 = X𝑖𝛽 + Z𝑖b𝑖 + 𝜖𝑖, , b𝑖 ∼ 𝒩(0, D) ⟂⟂ 𝜖𝑖 ∼ 𝒩(0, Σ𝑖)

X𝑖 can include time-constant and time-varying variables (interaction
between time and covariates too, e.g., tree growth)

X𝑖 should include the covariates in Z𝑖, as 𝔼(b𝑖) = 0

The main characteristic of the linear mixed model is to allow certain
variables to have random effects, i.e., to have parameters that vary from
one group/individual to another

This captures heterogeneity between groups/individuals

While each group is allowed an individual effect, the overall average of
these effects is zero
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Marginal versus conditional view

In this model, we still have the so-called marginal mean of 𝑌𝑖𝑗

𝔼(Y𝑖) = X𝑖𝛽

At the population level, the mean of Y𝑖 is only a function of the fixed
effects

We also have the conditional mean of Y𝑖, which depends on the
group-specific effect

𝔼(Y𝑖 ∣ b𝑖) = X𝑖𝛽 + Z𝑖b𝑖

The random effects are group-specific mean effects
The mean of Y𝑖 is a function of population and group-specific effects
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Marginal versus conditional view

Since b𝑖 are random terms, they introduce a within-group correlation in the
model

The marginal variance is

Cov(Y𝑖) = Σ𝑖 + Z𝑖DZ⊤
𝑖

→ a sum of deviations of groups from the population average + deviations
of observations from their group’s mean trend

The conditional variance is

Cov(Y𝑖 ∣ b𝑖) = Σ𝑖
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Random intercept model
A very common special case is the random intercept model

𝑌𝑖𝑗 = x⊤
𝑖𝑗𝛽 + 𝑏𝑖 + 𝜖𝑖𝑗,

where x𝑖𝑗 is the covariate vector for the 𝑗 th measurement of the 𝑖 th
group/individual

For the tree growth example, let’s assume the model
𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝑏𝑖 + 𝜖𝑖𝑗

with 𝑏𝑖 ∼ 𝒩(0, 𝑑) ⇒ only the intercept varies between the trees

Assuming independent and homogeneous errors 𝜖𝑖 ∼ 𝒩𝑛𝑖
(0, 𝜎2I), we get

Cov (𝑌𝑖𝑗, 𝑌𝑖𝑘) = 𝑑 + 𝜎2𝐼(𝑗 = 𝑘)

⇒ Corr (𝑌𝑖𝑗, 𝑌𝑖𝑘) = 𝑑
𝑑 + 𝜎2 = 𝜌, 𝑗 ≠ 𝑘

⇒ Compound symmetry correlation structure
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Example: Tree growth
Consider a simple model, where only the intercept is random:

𝔼[𝑌𝑘𝑖 ∣ 𝑋𝑘𝑖 = 𝑡𝑘𝑖, 𝑏𝑘] = (𝛽0 + 𝑏𝑘) + 𝛽1𝑡𝑘𝑖

and the corresponding fixed-effect-only model y ~ tree+time.
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Figure: Tree growth data and lines by fixed−effect−only model (dashed) and random intercept model (solid).
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Mixed linear models in R
To fit linear mixed models in R, one can use

function lme in the package nlme (see Pinheiro and Bates, 2000)
structure is similar to lm but with argument random

random = ~ 1 |subject : random intercepts for each group/subject
random = ~ 1 + time |subject : random intercepts and slopes for
each group/subject
multilevel models with several nested random effects (see this link for
details on multilevel models):
random = ~ 1+time | hospital/subject

function lmer in the package lme4 (see Bates et al, 2015)
includes GLM, via the glmer function
does not implement heteroscedasticity of residuals

For a larger class of linear mixed models including, e.g., smooth terms, see

functions gam and bam (for large data) in the package mgcv
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Section 3

Estimation of the LMM
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The marginal model

Estimation is usually based on the marginal model

The linear mixed model

⎧{{
⎨{{⎩

Y𝑖 = X𝑖𝛽 + Z𝑖b𝑖 + 𝜖𝑖
b𝑖 ∼ 𝒩 (0, D)
𝜖𝑖 ∼ 𝒩 (0𝑛𝑖

, Σ𝑖)
b1, … , b𝑚, 𝜖1, … , 𝜖𝑚 independent

implies the marginal model

Y𝑖 ∼ 𝒩 (X𝑖𝛽, V𝑖 = Z𝑖DZ𝑇
𝑖 + Σ𝑖) , for 𝑖 = 1, … , 𝑚
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Estimation of fixed effects

Let 𝛼 denote the vector of parameters of V𝑖, i.e., the elements in D
and Σ𝑖 (e.g., 𝜎2 if Σ𝑖 = 𝜎2I𝑛𝑖

)

Let 𝜃 = (𝛽, 𝛼)

Then, the marginal log-likelihood (log-likelihood of the marginal model) is

ℓ𝑀𝐿(𝜃) = −𝑛
2

log(2𝜋) − 1
2

log |V(𝛼)| − 1
2

(y − X𝛽)⊤V(𝛼)−1(y − X𝛽)

Let’s assume that 𝛼 is known and focus on estimation of the fixed effects:
𝜕

𝜕𝛽
ℓ𝑀𝐿(𝜃) = X⊤V(𝛼)−1(y − X𝛽) != 0

⇒ 𝛽̂𝑀𝐿(𝛼) = {X⊤V(𝛼)−1X}−1 X𝑇V(𝛼)−1y

⇒ 𝛽̂𝑀𝐿(𝛼) is a weighted least square estimator
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Estimation of variance parameters

Substituting 𝛽̂𝑀𝐿(𝛼) into the marginal log-likelihood gives the profile
log-likelihood ℓ𝑀𝐿(𝛽̂𝑀𝐿(𝛼), 𝛼)

⇒ maximize ℓ𝑀𝐿(𝛽̂𝑀𝐿(𝛼), 𝛼) numerically to obtain the ML estimator
𝛼̂𝑀𝐿

But, ML estimators of variance are known to be biased (downwards)

⇒ estimation by restricted maximum likelihood (REML)

Intuition of REML: Instead of working with Y, work with its linear
transformation U = A⊤Y s.t. 𝔼(U) = 0 and Var(U) depends only on 𝛼.
Then, maximize the likelihood based on U (does not involve the mean)

The matrix A is such that its columns are orthogonal to design matrix X
⇒ for two models with different design matrices, we use different Us and
their REML likelihoods are not comparable
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Interpretation of variance components
library(mixedup)
library(knitr)
library(lme4)

mm1 <- lmer(size~ time*treat + (1|tree), data=Sitka, REML=TRUE)
# summary(mm1)

Table 1: Estimated variance of random effects

group effect variance sd sd_2.5 sd_97.5 var_prop

tree Intercept 0.370 0.608 0.516 0.710 0.908
Residual NA 0.038 0.194 0.179 0.209 0.092

The estimated sd of the tree effect tells us how much, on average, size differs as we
move from a tree to another

the intra-group/intra-individual correlation: 0.37/(0.37 + 0.038) ≈ 0.907
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Prediction of random effects

The terms b𝑖 are random variables that can be predicted relying on the
conditional model (and not the marginal)

Y𝑖|b𝑖 ∼ 𝒩𝑛𝑖
(X𝑖𝛽 + Z𝑖b𝑖, Σ𝑖)

and
𝑓 (b𝑖 ∣ Y𝑖 = y𝑖) = 𝑓 (y𝑖 ∣ b𝑖) 𝑓 (b𝑖)

∫ 𝑓 (y𝑖 ∣ b𝑖) 𝑓 (b𝑖) 𝑑b𝑖

Usually, ̂b𝑖(𝜃) = 𝔼(b𝑖|Y𝑖 = y𝑖), with (hidden) parameters 𝛼 and 𝛽
replaced by their ML or REML estimates
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Section 4

Inference for the LMM
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Testing for the fixed effects

Wald test relying on the asymptotic normality of 𝛽̂

(𝛽̂ − 𝛽) ⋅∼ 𝒩(0, (X⊤V(𝛼̂)−1X)−1)

Not robust against model misspecification of 𝑉 = Cov(𝑌 )

LRT for nested models
Restricted likelihoods are not comparable when fixed effects differ as the
likelihood is based on the error contrasts 𝑈 = 𝐴⊤𝑌 and these depend on
𝑋, as 𝐴 ⟂ 𝑋
LRT can only be used with ML estimation (and not with REML)
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Example: Tree growth

library(nlme)

mm1 <- lme(size ~ time, random = ~ 1|tree, data=Sitka,
method="ML")

m1 <- lme(size ~ time * treat, random = ~ 1|tree, data=Sitka,
method="ML")

anova(m1,mm1)

Model df AIC BIC logLik Test L.Ratio p-value
m1 1 6 142.1890 166.0623 -65.09451
mm1 2 4 154.6453 170.5608 -73.32263 1 vs 2 16.45623 3e-04

ozone treatment is significant
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Testing for the random effects

Testing the need for a random effect is equivalent to testing that its variance is null

⇒ MLE regularity assumptions are typically not met: Under the null, the
parameter does not lie in the interior but on the boundary of the parameter space,
as 0 is on the boundary of [0, ∞)

Example: Denote

Cov (b𝑖) = D = ( 𝑑11 𝑑12
𝑑12 𝑑22

)

Consider three possible models:

M0 : no random effects (b𝑖 ≡ 0) , 𝑑11 = 𝑑12 = 𝑑22 = 0
M1 : only a random intercept (𝑏2𝑖 ≡ 0) , 𝑑12 = 𝑑22 = 0
M2 : (correlated) random intercept and slope

We can compare M2 and M1 by testing for 𝐻0,1 ∶ 𝑑12 = 𝑑22 = 0 and M1 and M0
by testing for 𝐻0,2 ∶ 𝑑11 = 0
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Testing for the random effects

Testing for 𝐻0,2 ∶ 𝑑11 = 0

the LRT statistic is not asymptotically 𝜒2
1 distributed but is rather a

mixture of a point mass at 0 (half of the time) and a 𝜒2
1 distribution,

under the null → divide the 𝑝-value by two

For Σ𝑖 = 𝜎2I, an exact distribution is available (Crainiceanu and
Ruppert, 2004); see the R package RLRsim

Testing for 𝐻0,1 ∶ 𝑑12 = 𝑑22 = 0

the LRT statistic is not asymptotically 𝜒2
2 distributed but is rather a

mixture of a 𝜒2
1 (half of the time) and a 𝜒2

2 distribution, under the null
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Example: Tree growth

mm1 <- lme(size ~ time, random = ~ 1|tree, data=Sitka,
method="REML")

mm2 <- lme(size ~ time, random = ~ time|tree, data=Sitka,
method="REML")

anova(mm1, mm2)

Model df AIC BIC logLik Test L.Ratio p-value
mm1 1 4 172.7768 188.6720 -82.38840
mm2 2 6 136.9669 160.8098 -62.48344 1 vs 2 39.80992 <.0001
t.stat <- 39.80992
p.value <- 0.5 * (1-pchisq(t.stat,1)) + 0.5 * (1-pchisq(t.stat,2))

p.value

[1] 1.273288e-09
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