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Introduction

The goal today is to show how the linear regression model can be adapted
to account for dependence between observations

@ Consider a random vector Y of dimension n

@ such a vector would usually comprise of repeated measures on an
individual, or even observations from a group of individuals

@ When independence fails, the estimated standard errors of the
coefficients of the linear model are too small = reject the null
hypothesis more often then we should if the null is true (inflated Type |
error, false positives)

@ Need to account for within-group correlations, i.e., model a covariance
matrix for observations within the same group (or within the same
individual in the case of repeated measures)
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Introduction

Longitudinal studies on independent subjects
@ Measurements are taken from the same individuals, usually over time

@ These data are termed repeated measures or longitudinal data, but
econometricians use the vocable panel data

@ The individuals are independent from one another; however,
measurements from the same subject are not independent

Studies on subjects that are not independent

Subjects are sampled within a group

subjects sampled from the same household

subjects sampled from within several businesses

@ subjects sampled within schools, hospitals, etc
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Introduction

We can always consider correlated data as grouped data, where there is
within-group correlation

@ In longitudinal data, we have several records for each individual
@ In other examples, the groups could be households, schools, hospitals,
businesses, etc.

subject 1

subject 2
group 1

group 2

subject 3

group 3
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What happens if we ignore within-group correlation?

Suppose that we have grouped data and we perform a one-sample t¢-test
with level o = 5%
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within-group correlation

Type | error probability increases with correlation, as well as with the
number of samples within each group = statistical inference is typically no
longer valid ...
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Example: Tree growth

O WN -

o log-size (log-height+2log-diameter) of 79 (Sitka spruce) trees
measured repeatedly in about 1-month intervals

@ each tree measured 5-times
@ 54 trees grown in ozone-enriched environment (treat=1) and 25 were

control
size
4.51 152
4.98 174
5.41 201
5.90 227
6.15 258
4.24 152
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Example: Spaghetti plot

size of tree

@ Spaghetti plot that shows 79 curves (one for each tree)

@ The size seems to increase with time, on average. The increase could
be linear!

Linda Mhalla Week 7: Linear Mixed Models 2025-03-31 7/38



Section 1



Notations

@ Suppose that we collect observations from m groups such that:

o There are n, observations within group i (i = 1,...,m)
e Any two observations from the same group are possibly correlated
e Any two observations from different groups are assumed independent

@ Groups can be formed in several ways:

o Several measures can be taken from the same subject (repeated
measures) and each individual forms a group

e A group could also consist of individuals from the same school,
department, or family

@ We use the index ¢ to indicate the group, and j to indicate an
observation within a group

oY, =(Y;,..,Y,;, ) the outcome variable for group i
° Xij = (1>Xij1, "'aXijp>

observation j in group %

T the set of p explanatory variables for
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Linear model with correlated errors

The linear regression model is
Yij = Bo+ 51 Xij + -+ B, Xijp + €45

fori=1,...,mand j=1,...,n,;, where ¢,; is the error term for
observation j in group 1

We assume that E(e;; | X;;) = 0 and therefore
E(Y;; | X;) =By + 81X+ + B Xijp
However, we no longer assume that the error terms are independent, i.e., €

and hence Y (when X is fixed) are assumed correlated
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Linear model with correlated errors

@ We assume the groups are independent from one another, so
COV(ﬁ,L'j, Gi/j/> - 0 |f Z 7£ i/

@ We model the within-group correlation by assuming that the
covariance matrix of Y for group i is

Cov(Y; [ X;) = Cov(e; | X;) =%,
where &, = (&;1, ..., €, ) is the vector of errors for group i

@ Assuming data re ordered by group, the full covariance matrix is
block-diagonal

¥, O - O
coviy)= | 9
O 0 - %
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Covariance structures

@ Compound symmetry: observations within a group are interchangeable

o+ T T T T T
T o2+ T T T
3, = T T ol +T T T
T T T o247 T
T T T T o’ 4+

@ Auto-regressive structure AR(1): magnitude of correlation depends on
amount of time between observations

1L p p* p* p!
p 1 p p p°
R,=|p> p 1 p p?|, withZ, =0%R,
P> p® p 1 p
pt PP op 1
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Covariance structures

@ Heterogeneous AR structure ARH(1): same correlation matrix as AR(1) but
covariance matrix

ot 01050 0103p°  0y04p° 01050

02019 o3 0203 0304p°  0305p

B = | 03010°  0309p 3 0304p 0305p0

0401p°  0405p°  0405p o 0405P
o501p" 050007 0503p7  0509p o3

@ Unstructured covariance matrix ...
Tree growth example: we get 15 parameters under the unstructured model,

compared to two parameters for the compound symmetry and the AR(1)
covariance models, and to six for the ARH(1) covariance model
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Comparing covariance structures

@ Many models are nested so use formal likelihood ratio tests whenever
possible for comparisons

e e.g., independence < AR(1) < ARH(1) < unstructured

@ Using AIC or BIC to compare models is valid provided the mean
model includes the same variables

@ When inference relies on ML (rather than REML), AIC and BIC can be
used to compare models with different variables for the mean

Details on inference to follow ...
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Exploring covariance structures

. . . . . o T7 .
o For visualization, consider the residuals r;; = y;; — x;,5, where x;; is
the covariate vector for the j-th measurement of the i-th subject and 3

is estimated by a linear regression ignoring the correlation

o Alternative 1: display the correlation as scatterplot of r;; vs. r;;, for
each pair (j, k) (for equidistant and equal (or binned) time points ¢ )

o Alternative 2: plot products r;;7;;, as estimates of the residual
covariance, against their time distance |tij — tik]

@ The data should always be displayed graphically before beginning with
the analysis

@ Graphics should be chosen appropriately to the data and questions at
hand!

@ Exploring the mean and correlation is helpful for model building
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Introduction: Tree growth example

@ So far, we have only accounted for group structure by modelling the
within-group correlation

@ We may also want to include a group/individual effect in the mean model,
e.g., a different intercept (and/or slope) for each group/individual

Suppose that the tree growth is approximately linear

Yi; = Bin + Bioty; + BsTreat; +¢;;, ¢~ N, (0,%;)

The effect of Treat is not identifiable ...

@ Collinearity issues: a variable fixed in time is perfectly collinear with the
group/individual variable

@ We cannot have a fixed effect for each tree while simultaneously including
variables that are fixed in time (ozone treatment)
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Introduction: A two-stage approach

Stage 1: Separate linear models for each tree i, i.e., assume the growth of each

tree is approximately linear with tree-specific intercepts and slopes:
Vi =B+ Bty + €5, € ~N, (0,%)
. T T
With Y, = (Y1, ... Y, ) B, = (B, Bia) " and

s (1 1 « 1 . 1)
N T .

and with distributional assumption (normality), we can write this as

Y =2, + e, ¢~ N, (0,%)
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Introduction: A two-stage approach
Stage 2: Regression model for the coefficients 3, = (ﬁil,ﬁm)T
Bin = By + PyTreat; + by, By = B3+ ByTreat; + by,

i.e., B;; and B, are tree-specific intercepts and slopes depending on ozone
treatment Treat;, and b;; and b,y are residual terms

With 8 = (ﬁlvﬁQaﬂSaBéL)T' b, = (bilabiZ)T ~ N, (0,D), and

1 Treat; 0 O
Ki_(O 0 1 Treati>

and with distributional assumption, the second-stage model is

B, =K;,8+b;, b, ~N,(0,D)

= systematic differences between treated and control trees

= individual intercepts/slopes that are normally distributed around their treatment
means
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Introduction: A two-stage approach

The resulting combined model is
Y; =Z,K;f+Zb;+¢;, b;~N,0D)Le~NOL
=X,8+Z,b, + ¢

Disadvantages:

© We often have few observations per group/individual to estimate 3,

@ Uncertainty assessment is tricky as plug-in estimate ﬁi replaces BZ. in
second-stage model

Conclusion:

Combining both models in one model seems more adequate — the combined
model is the linear mixed model
@ [ are called fixed effects: population effects

@ The residuals b, are normally distributed and are termed the random effects:
group/individual-specific effects
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The linear mixed model

Y, =X;8+Zb;+¢,, b,~N(0,D)Le~N0OZX)
e X, can include time-constant and time-varying variables (interaction
between time and covariates too, e.g., tree growth)
e X, should include the covariates in Z;, as E(b;) = 0

The main characteristic of the linear mixed model is to allow certain
variables to have random effects, i.e., to have parameters that vary from
one group/individual to another

@ This captures heterogeneity between groups/individuals

@ While each group is allowed an individual effect, the overall average of
these effects is zero
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Marginal versus conditional view

In this model, we still have the so-called marginal mean of Yij

[E<Yi) = Xzﬁ

@ At the population level, the mean of Y, is only a function of the fixed
effects

We also have the conditional mean of Y;, which depends on the
group-specific effect

E(Y; | b;) = X;8+Z;b,

@ The random effects are group-specific mean effects
@ The mean of Y, is a function of population and group-specific effects
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Marginal versus conditional view

Since b, are random terms, they introduce a within-group correlation in the
model

@ The marginal variance is

Cov(Y;) =%, + Z,DZ]

— a sum of deviations of groups from the population average + deviations
of observations from their group’s mean trend
@ The conditional variance is

P

(]

Cov(Y, | b;)
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Random intercept model

A very common special case is the random intercept model
T
Yij =x,;8+b; + €

where x;; is the covariate vector for the j th measurement of the 7 th
group/individual
For the tree growth example, let's assume the model
with b, ~ NV (0,d) = only the intercept varies between the trees
Assuming independent and homogeneous errors ¢€; ~ Nni(O, o), we get
Cov (Y;J,Ylk) =d+o%l(j=k)
= Corr (Y, Vi) =p, jFk

i Yie) = o

= Compound symmetry correlation structure
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Example: Tree growth

Consider a simple model, where only the intercept is random:
E[Yy; | Xii = tris bl = (Bo +by) + Brty,

and the corresponding fixed-effect-only model y ~ tree+time.

7-

tree
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-2 - 22 - 42 - 62
- 3 e 23 -e- 43 -+ 63
] e 4 - 24 - 44 -+ 64
e 5 e 25— 45 = 65
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Figure: Tree growth data and lines by fixed—effect-only model (dashed) and random intercept model (solid).
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Mixed linear models in R

To fit linear mixed models in R, one can use

@ function lme in the package nlme (see Pinheiro and Bates, 2000)
e structure is similar to 1m but with argument random
e random = ~ 1 |subject : random intercepts for each group/subject

@ random = ~ 1 + time |subject : random intercepts and slopes for
each group/subject

e multilevel models with several nested random effects (see this link for
details on multilevel models):
random = ~ 1+time | hospital/subject

@ function lmer in the package Ime4 (see Bates et al, 2015)

e includes GLM, via the glmer function
e does not implement heteroscedasticity of residuals

For a larger class of linear mixed models including, e.g., smooth terms, see

@ functions gam and bam (for large data) in the package mgcv
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http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#model-definition
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The marginal model

Estimation is usually based on the marginal model

The linear mixed model

Y, =X,8+2Zb, +¢
b, ~ N (0,D)

€; ~N<0ni,2i>
by,...,b,,,€1,...,€

9 m

m independent

implies the marginal model
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Estimation of fixed effects

@ Let o denote the vector of parameters of V, i.e., the elements in D
and ¥, (e.g., o2 if Y, = O'2Ini)

o Let 0= (B, )

Then, the marginal log-likelihood (log-likelihood of the marginal model) is

£311(60) = — 5 log(2m) — S log V()| — 5 (y — XB) V(a) " (y — X5)

Let's assume that a is known and focus on estimation of the fixed effects:

9 T ~1 L
%KML (0) =X"V(a) " (y—Xp) =0

= By (@) = {X V() ' X} XTV(a) !

= f3,,; (@) is a weighted least square estimator
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Estimation of variance parameters

@ Substituting 3ML(a) into the marginal log-likelihood gives the profile

log-likelihood £, (8,,, (@), @)
= maximize EML(BML(Q), «) numerically to obtain the ML estimator
ang
@ But, ML estimators of variance are known to be biased (downwards)
= estimation by restricted maximum likelihood (REML)

Intuition of REML.: Instead of working with Y, work with its linear
transformation U = ATY s.t. E(U) = 0 and Var(U) depends only on «.
Then, maximize the likelihood based on U (does not involve the mean)

The matrix A is such that its columns are orthogonal to design matrix X
= for two models with different design matrices, we use different Us and
their REML likelihoods are not comparable
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Interpretation of variance components

library(mixedup)
library(knitr)
library(1lme4)

mml <- lmer(size~ time*treat + (1|tree), data=Sitka, REML=TRUE)
# summary (mml)

Table 1: Estimated variance of random effects

group effect variance sd sd_2.5 sd_97.5 wvar_prop
tree Intercept 0.370 0.608 0.516 0.710 0.908
Residual NA 0.038 0.194 0.179 0.209 0.092

The estimated sd of the tree effect tells us how much, on average, size differs as we
move from a tree to another

@ the intra-group/intra-individual correlation: 0.37/(0.37 4+ 0.038) ~ 0.907
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Prediction of random effects

The terms b, are random variables that can be predicted relying on the
conditional model (and not the marginal)

Y;b, ~ N, (X;,+Z;b;,%;)

and

f(yi|b;) f(b,
fo | Y, =y;) = i | b,) 7(by)
ff(yi | b;) f(b;) db,
Usually, b;(6) = E(b;|Y, =y,), with (hidden) parameters o and f3
replaced by their ML or REML estimates
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Testing for the fixed effects

o Wald test relying on the asymptotic normality ofB

(B—B) ~ N(0,(XTV(a)'X)™)
Not robust against model misspecification of V' = Cov(Y)
o LRT for nested models

o Restricted likelihoods are not comparable when fixed effects differ as the
likelihood is based on the error contrasts U = A' Y and these depend on
X,as A1l X

o LRT can only be used with ML estimation (and not with REML)
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Example: Tree growth

library(nlme)

mml <- lme(size ~ time, random
method="ML")

ml <- lme(size ~ time * treat,

method="ML")
anova(ml,mml)
Model df AIC BIC
ml 1 6 142.1890 166.0623
mm1 2 4 154.6453 170.5608

@ ozone treatment is significant

= ~ 1|tree, data=Sitka,

random = ~ 1|tree, data=Sitka,

loglik Test L.Ratio p-value
-65.09451
-73.32263 1 vs 2 16.45623 3e-04
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Testing for the random effects

Testing the need for a random effect is equivalent to testing that its variance is null

= MLE regularity assumptions are typically not met: Under the null, the

parameter does not lie in the interior but on the boundary of the parameter space,
as 0 is on the boundary of [0, c0)

Example: Denote

d d
CO b :D: 11 12 )
v (by) (du oy

Consider three possible models:

@ M, : no random effects (b, =0),d;; =djy =dy =0
@ M, : only a random intercept (by; =0),d;5 = dyy =0

@ M, : (correlated) random intercept and slope

We can compare M, and M, by testing for H ; : d5 = dyy = 0 and M; and M,
by testing for Hy 5 : dj; =0

Linda Mhalla Week 7: Linear Mixed Models 2025-03-31 36/38



Testing for the random effects

o Testing for Hy 5 : dy; =0

o the LRT statistic is not asymptotically x? distributed but is rather a
mixture of a point mass at 0 (half of the time) and a x? distribution,
under the null — divide the p-value by two

e For X, = 021, an exact distribution is available (Crainiceanu and
Ruppert, 2004); see the R package RLRsim

o TeStIng fOI’ HO,I : d12 - d22 - O

e the LRT statistic is not asymptotically X% distributed but is rather a
mixture of a x? (half of the time) and a x2 distribution, under the null
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Example: Tree growth

mml <- lme(size ~ time, random = ~ 1|tree, data=Sitka,
method="REML")
mm2 <- lme(size ~ time, random = ~ time|tree, data=Sitka,

method="REML")

anova(mml, mm2)

Model df AIC BIC logLik Test L.Ratio p-value
mm1 1 4 172.7768 188.6720 -82.38840
mm2 2 6 136.9669 160.8098 -62.48344 1 vs 2 39.80992 <.0001

t.stat <- 39.80992
p-value <- 0.5 * (1-pchisq(t.stat,1)) + 0.5 * (1-pchisq(t.stat,2))

p.value

[1] 1.273288e-09
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