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KDE

One-dimensional KDE (from last week):

̂𝑓(𝑥) = 1
𝑛ℎ𝑛

𝑛
∑
𝑖=1

𝐾 (𝑋𝑖 − 𝑥
ℎ𝑛

)

Multidimensional generalization (separable) when 𝑋1, … , 𝑋𝑛 ∈ ℝ𝑑:

̂𝑓(x) = 1
𝑛ℎ𝑑

𝑛
∑
𝑖=1

𝐾 (𝑋𝑖,1 − 𝑥1
ℎ ) ⋅ … ⋅ 𝐾 (𝑋𝑖,𝑑 − 𝑥𝑑

ℎ )
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Section 1

Non-parametric Regression
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Non-parametric Regression Setup

we observe i.i.d. copies of a bivariate random vector (𝑋, 𝑌 )⊤

a random sample (𝑋1, 𝑌1)⊤, … , (𝑋𝑛, 𝑌𝑛)⊤

the response variable 𝑌 is related to the covariate 𝑋 through

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜖𝑖, 𝔼(𝜖𝑖) = 0 and var(𝜖𝑖) = 𝜎2

we are interested in the conditional expectation of 𝑌 given 𝑋, i.e.,
the regression function

𝑚(𝑥) = 𝔼(𝑌 |𝑋 = 𝑥)

we want to avoid parametric assumptions
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Data Example
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head acceleration 𝑌 depending on time 𝑋 in a simulated motorcycle
accident used to test crash helmets
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Local average estimator
Goal: estimate 𝑚(𝑥) = 𝔼(𝑌 ∣𝑋 = 𝑥) from (𝑋1, 𝑌1)⊤, … , (𝑋𝑛, 𝑌𝑛)⊤ i.i.d.
Since 𝑚(𝑥) = 𝔼(𝑌 |𝑋 = 𝑥), one can estimate 𝑚(𝑥) by averaging the 𝑌𝑖s
for which 𝑋𝑖 is “close” to 𝑥
⇒ different averaging methods and different measures of closeness yield
different estimators
The local average estimator is

𝑚̂𝑛(𝑥) = ∑𝑛
𝑖=1 𝐼(𝑥 − ℎ < 𝑋𝑖 ≤ 𝑥 + ℎ)𝑌𝑖

∑𝑛
𝑖=1 𝐼(𝑥 − ℎ < 𝑋𝑖 ≤ 𝑥 + ℎ)

=
∑𝑛

𝑖=1
1
2𝟙[−1,1)(𝑥−𝑋𝑖

ℎ )𝑌𝑖

∑𝑛
𝑖=1

1
2𝟙[−1,1)(𝑥−𝑋𝑖

ℎ )
,

for ℎ > 0
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Local average estimator
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Local Constant Regression

Since 𝑚(𝑥) = ∫ℝ 𝑦𝑓𝑌 |𝑋(𝑦|𝑥)𝑑𝑦 = ∫ℝ 𝑦𝑓𝑋,𝑌 (𝑥,𝑦)𝑑𝑦
𝑓𝑋(𝑥) and we can now estimate

densities, let’s plug in those estimators

̂𝑓𝑋(𝑥) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾 (𝑥 − 𝑋𝑖
ℎ )

̂𝑓𝑋,𝑌 (𝑥, 𝑦) = 1
𝑛ℎ2

𝑛
∑
𝑖=1

𝐾 (𝑥 − 𝑋𝑖
ℎ ) 𝐾 (𝑦 − 𝑌𝑖

ℎ )

to obtain

𝑚̂(𝑥) =
∑𝑛

𝑖=1 𝐾 (𝑥−𝑋𝑖
ℎ ) 𝑌𝑖

∑𝑛
𝑖=1 𝐾 (𝑥−𝑋𝑖

ℎ )
⇒ The “boxcar” kernel is replaced by a general kernel and yields the
so-called Nadaraya–Watson kernel estimator
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Local Constant Regression
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Time [ms]

A
cc

el
er

at
io

n 
[g

]

Linda Mhalla Week 4: Nonparametric Regression 2024-10-04 9 / 28



Local Constant Regression

The Nadaraya–Watson kernel estimator

𝑚̂(𝑥) =
∑𝑛

𝑖=1 𝐾 (𝑋𝑖−𝑥
ℎ ) 𝑌𝑖

∑𝑛
𝑖=1 𝐾 (𝑋𝑖−𝑥

ℎ )
=

𝑛
∑
𝑖=1

𝐾 (𝑋𝑖−𝑥
ℎ )

∑𝑛
𝑗=1 𝐾 (𝑋𝑗−𝑥

ℎ )
𝑌𝑖 =

𝑛
∑
𝑖=1

𝑊 0
𝑖 (𝑥)𝑌𝑖

is a weighted mean of the 𝑌𝑖 and can be considered as a solution to the weighted
least squares:

𝑚̂(𝑥) = arg min
𝛽0∈ℝ

𝑛
∑
𝑖=1

𝐾 (𝑥 − 𝑋𝑖
ℎ ) (𝑌𝑖 − 𝛽0)2

For a fixed 𝑥, this is a weighted intercept-only regression, with weights given by
the kernel ⇒ estimate suffers from boundary bias
What if we went for better than intercept-only regression?
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Local Polyomial Regression

The aim is to find the local regression parameters 𝛽(𝑥) s.t.

𝛽̂(𝑥) = arg min
𝛽∈ℝ𝑝+1

𝑛
∑
𝑖=1

𝐾 (𝑥 − 𝑋𝑖
ℎ ) {𝑌𝑖 − 𝛽0 − 𝛽1(𝑋𝑖 − 𝑥) − … − 𝛽𝑝(𝑋𝑖 − 𝑥)𝑝}2

Why does this make sense?
Recall that the aim is to estimate 𝑚(𝑥) = 𝔼(𝑌 |𝑋 = 𝑥) and hence to
minimize the SS 𝑛

∑
𝑖=1

{𝑌𝑖 − 𝑚(𝑋𝑖)}2

A Taylor expansion of 𝑚 for 𝑥 close to 𝑋𝑖 is

𝑚(𝑋𝑖) ≈ 𝑚(𝑥)+(𝑋𝑖−𝑥)𝑚′(𝑥)+(𝑋𝑖 − 𝑥)2

2! 𝑚″(𝑥)+…+(𝑋𝑖 − 𝑥)𝑝

𝑝! 𝑚𝑝(𝑥),
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𝛽∈ℝ𝑝+1

𝑛
∑
𝑖=1

𝐾 (𝑥 − 𝑋𝑖
ℎ ) {𝑌𝑖 − 𝛽0 − 𝛽1(𝑋𝑖 − 𝑥) − … − 𝛽𝑝(𝑋𝑖 − 𝑥)𝑝}2

Why does this make sense?
Recall that the aim is to estimate 𝑚(𝑥) = 𝔼(𝑌 |𝑋 = 𝑥) and hence to
minimize the SS 𝑛

∑
𝑖=1

{𝑌𝑖 − 𝑚(𝑋𝑖)}2

A Taylor expansion of 𝑚 for 𝑥 close to 𝑋𝑖 is

𝑚(𝑋𝑖) ≈ 𝑚(𝑥)+(𝑋𝑖−𝑥)𝑚′(𝑥)+(𝑋𝑖 − 𝑥)2

2! 𝑚″(𝑥)+…+(𝑋𝑖 − 𝑥)𝑝

𝑝! 𝑚𝑝(𝑥),

Linda Mhalla Week 4: Nonparametric Regression 2024-10-04 11 / 28



Local Polyomial Regression
The SS can be rewritten as

𝑛
∑
𝑖=1

{𝑌𝑖 −
𝑝

∑
𝑗=0

𝑚𝑗(𝑥)
𝑗! (𝑋𝑖 − 𝑥)𝑗}

2

Thus, ̂𝛽𝑗(𝑥) estimates 𝑚(𝑗)(𝑥)
𝑗!

𝑚̂(𝑥) = ̂𝛽0(𝑥)
𝑚′(𝑥) = ̂𝛽1(𝑥)

Finally, add a weighting kernel to make the contributions of 𝑋𝑖 dependent
on their distance to 𝑥
⇒ 𝛽̂ becomes the solution to a weighted least squares problem

𝛽̂ = arg min
𝛽∈ℝ𝑝+1

(Y − X𝛽)⊤W(Y − X𝛽) = (X⊤WX)−1X⊤WY,

where W is a diagonal matrix with entries depending on the kernel!
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Local Linear Regression
Choosing the order 𝑝 = 1 leads to the local linear estimator

( ̂𝛽0(𝑥), ̂𝛽1(𝑥)) = arg min𝛽∈ℝ2

𝑛
∑
𝑖=1

{𝑌𝑖 − 𝛽0 − 𝛽1(𝑋𝑖 − 𝑥)}2𝐾 (𝑥 − 𝑋𝑖
ℎ ) ,

It can be shown that 𝑚̂(𝑥) = ̂𝛽0(𝑥) = ∑𝑛
𝑖=1 𝑤𝑛𝑖(𝑥)𝑌𝑖, where

𝑤𝑛𝑖(𝑥) = 1
𝑛ℎ

𝐾 (𝑥−𝑋𝑖
ℎ ) {𝑆𝑛,2(𝑥) − (𝑋𝑖 − 𝑥) 𝑆𝑛,1(𝑥)}

𝑆𝑛,0(𝑥)𝑆𝑛,2(𝑥) − 𝑆2
𝑛,1(𝑥)

with 𝑆𝑛,𝑘(𝑥) = 1
𝑛ℎ ∑𝑛

𝑖=1 (𝑋𝑖 − 𝑥)𝑘 𝐾 (𝑋𝑖−𝑥
ℎ )

∑𝑛
𝑖=1 𝑤𝑛𝑖(𝑥) = 1

⇒ 𝑚̂ is a linear smoother, i.e., ∀𝑥, it can be defined by a weighted
average: 𝑚̂(𝑥) = ∑𝑛

𝑖=1 𝑙𝑖(𝑥)𝑌𝑖 (valid for Nadaraya–Watson and any 𝑝)
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Visualization

A shiny App can be found here
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Bias and Variance
For local linear regression, similarly to KDE and under regularity
assumptions on 𝑚, 𝑓 , 𝐾, ℎ, and 𝑛ℎ𝑛,

bias{𝑚̂(𝑥)} = 1
2𝑚″(𝑥)ℎ2

𝑛 ∫ 𝑧2𝐾(𝑧)𝑑𝑧 + 𝑜𝑃 (ℎ2
𝑛)

var{𝑚̂(𝑥)} = 𝜎2(𝑥)
𝑓𝑋(𝑥)

∫{𝐾(𝑧)}2𝑑𝑧
𝑛ℎ𝑛

+ 𝑜𝑃 ( 1
𝑛ℎ𝑛

)

where 𝜎2(𝑥) = var(𝑌1|𝑋1 = 𝑥) is the conditional/local variance
This implies that

the bias depends on the curvature of 𝑚: negative for concave and
positive for convex regions
the variance decreases at a rate inversely proportional to the effective
sample size 𝑛ℎ𝑛

For other orders, similar expressions can be obtained
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Nadaraya–Watson vs Local Linear estimator

It can be shown that, under the same smoothing conditions on 𝑓(𝑥) and
𝑚(𝑥), the Nadaraya–Watson estimator 𝑚̃

has the same variance as the local linear estimator 𝑚̂
has bias

bias{𝑚̃(𝑥)} = ℎ2
𝑛{1

2𝑚″(𝑥) + 𝑚′(𝑥)𝑓 ′(𝑥)
𝑓(𝑥) } ∫ 𝑧2𝐾(𝑧)𝑑𝑧 + 𝑜𝑃 (ℎ2

𝑛)

⇒ At the boundary points, the NW estimator bears high value due to the
large absolute value of 𝑓 ′(𝑥)/𝑓(𝑥)
⇒ Local linear estimation has no boundary bias at it does not depend on
𝑓(𝑥) (no design bias)
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Bandwidth Selection

Similarly to what we did last week with KDEs, we consider

𝑀𝑆𝐸{𝑚̂(𝑥)} = var{𝑚̂(𝑥)} + [bias{𝑚̂(𝑥)}]2

and, dropping the little-o terms, we obtain

𝐴𝑀𝑆𝐸{𝑚̂(𝑥)} = 𝜎2(𝑥) ∫{𝐾(𝑧)}2𝑑𝑧
𝑓𝑋(𝑥)𝑛ℎ𝑛

+1
4{𝑚″(𝑥)}2ℎ4

𝑛 (∫ 𝑧2𝐾(𝑧)𝑑𝑧)
2

.

Now, a local bandwidth choice can be obtained by optimizing AMSE.
Taking derivatives and setting them to zero, we obtain

ℎ𝑜𝑝𝑡(𝑥) = 𝑛−1/5 [ 𝜎2(𝑥) ∫{𝐾(𝑧)}2𝑑𝑧
{𝑚″(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧}2𝑓𝑋(𝑥)

]
1/5
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Bandwidth Selection

ℎ𝑜𝑝𝑡(𝑥) = 𝑛−1/5 [ 𝜎2(𝑥) ∫{𝐾(𝑧)}2𝑑𝑧
{𝑚″(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧}2𝑓𝑋(𝑥)

]
1/5

This is somewhat more complicated compared to the KDE case, because
we have to estimate

the marginal density 𝑓𝑋(𝑥),
let’s say that we already know how to do this, e.g., by KDE even
though that requires a choice of yet another bandwidth

the local variance function 𝜎2(𝑥) = var(𝑌1|𝑋1 = 𝑥), and
the second derivative of the regression function 𝑚″(𝑥)

Again, like in the case of KDEs, the global bandwidth choice can be
obtained by integration:

calculate 𝐴𝑀𝐼𝑆𝐸(𝑚̂) = ∫ 𝐴𝑀𝑆𝐸{𝑚̂(𝑥)}𝑑𝑥, and
set ℎ𝐴𝑀𝐼𝑆𝐸 = arg min

ℎ>0
𝐴𝑀𝐼𝑆𝐸(𝑚̂)
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Rule of Thumb Plug-in Algorithm

Replace the unknown quantities in

ℎ𝐴𝑀𝐼𝑆𝐸 = 𝑛−1/5[ ∫ 𝐾2(𝑧)𝑑𝑧 ∫ 𝜎2(𝑥)𝑑𝑥
∫ 𝑧2𝐾(𝑧)𝑑𝑧 ∫{𝑚″(𝑥)}2𝑓𝑋(𝑥)𝑑𝑥]

1/5

by parametric OLS estimators

Assume homoscedasticity and a quartic kernel, then

ℎ𝐴𝑀𝐼𝑆𝐸 = 𝑛−1/5(35𝜎2|𝑠𝑢𝑝𝑝(𝑋)|
𝜃22

)
1/5

, 𝜃22 = ∫{𝑚″(𝑥)}2𝑓𝑋(𝑥)𝑑𝑥

Block the sample in 𝑁 blocks and fit, in each block 𝑗, the model

𝑦𝑖 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖 + 𝛽2𝑗𝑥2
𝑖 + 𝛽3𝑗𝑥3

𝑖 + 𝛽4𝑗𝑥4
𝑖 + 𝜖𝑖

to obtain estimate 𝑚̂𝑗(𝑥𝑖) = ̂𝛽0𝑗 + ̂𝛽1𝑗𝑥𝑖 + ̂𝛽2𝑗𝑥2
𝑖 + ̂𝛽3𝑗𝑥3

𝑖 + ̂𝛽4𝑗𝑥4
𝑖
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Rule of Thumb Plug-in Algorithm

Estimate the unknown quantities by

̂𝜃22(𝑁) = 1
𝑛

𝑛
∑
𝑖=1

𝑁
∑
𝑗=1

𝑚̂″
𝑗 (𝑋𝑖)𝑚̂″

𝑗 (𝑋𝑖)𝟙𝑋𝑖∈𝒳𝑗

𝜎̂2(𝑁) = 1
𝑛 − 5𝑁

𝑛
∑
𝑖=1

𝑁
∑
𝑗=1

{𝑌𝑖 − 𝑚̂𝑗(𝑋𝑖)}2𝟙𝑋𝑖∈𝒳𝑗

Remark Unknown quantities can also be replaced by non-parametric
estimates, using a pilot bandwidth (see lecture notes for details).

Linda Mhalla Week 4: Nonparametric Regression 2024-10-04 20 / 28

https://math-517.github.io/math_517_website/notes/week_04.html


Why Local Linear?

Bias and variance can be calculated similarly also for higher order local
polynomial regression estimators. In general:

bias decreases with an increasing order
variance increases with increasing order, but only for
𝑝 = 2𝑘 + 1 → 𝑝 + 1, i.e., when increasing an odd order to an even one

For this reason, odd orders are preferred to even ones

𝑝 = 1 is easy to grasp as it corresponds to locally fitted simple
regression line
increasing 𝑝 has a similar effect to decreasing the bandwidth ℎ

hence 𝑝 = 1 is usually fixed and only ℎ is tuned
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Section 2

Other Smoothers
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Smoothing Splines

Consider the optimization problem

arg min
𝑔∈𝐶2

𝑛
∑
𝑖=1

{𝑌𝑖 − 𝑔(𝑋𝑖)}
2 + 𝜆 ∫ {𝑔″(𝑥)}2𝑑𝑥

measure of closeness to the data, and
smoothing penalty: 𝜆 > 0 controls the trade-off between fit and smoothness

Unique solution: the natural cubic spline
- piece-wise cubic polynomial between
- knots at 𝑋𝑖, 𝑖 = 1, … , 𝑛
- two continuous derivatives at the knots
- 𝑚̂″(𝑥1) = 𝑚̂″(𝑥𝑛) = 0
⇒ it has 𝑛 free parameters
Source: Wood (2017)
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http://www.taylorfrancis.com/books/mono/10.1201/9781315370279/generalized-additive-models-simon-wood


Cubic Spline Basis
A natural cubic spline 𝑔 with 𝑛 knots can be expressed w.r.t. the natural
cubic spline basis {𝑒𝑗} (a set of basis functions) as

𝑚(𝑥) =
𝑛

∑
𝑗=1

𝛾𝑗𝑒𝑗(𝑥)
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Smoothing Splines
A natural cubic spline 𝑔 with 𝑛 knots can be expressed w.r.t. the natural
cubic spline basis {𝑒𝑗} (a set of basis functions) as

𝑚(𝑥) =
𝑛

∑
𝑗=1

𝛾𝑗𝑒𝑗(𝑥)

Let

𝛾 = (𝛾1, … , 𝛾𝑛)⊤ ∈ ℝ𝑛 be unknown coefficients
𝐸 ∶= (𝑒𝑖𝑗) ∶= {𝑒𝑗(𝑥𝑖)}

𝑛
𝑖,𝑗=1 ∈ ℝ𝑛×𝑛 and

Ω = (𝜔𝑖𝑗) ∈ ℝ𝑛×𝑛 with 𝜔𝑖𝑗 = ∫ 𝑒″
𝑖 (𝑥)𝑒″

𝑗 (𝑥)𝑑𝑥
Then, the optimisation problem becomes

𝑛
∑
𝑖=1

{𝑌𝑖−𝑚(𝑋𝑖)}
2+𝜆 ∫ {𝑚″(𝑥)}2𝑑𝑥 ≡ (𝑌 −𝐸𝛾)⊤(𝑌 −𝐸𝛾)+𝜆𝛾⊤Ω𝛾
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Smoothing Splines
The solution is obtained in closed form

̂𝛾 = (𝐸⊤𝐸 + 𝜆Ω)𝐸⊤𝑌

The fitted values are

𝑌 = (𝑚̂𝜆(𝑥1), … , 𝑚̂𝜆(𝑥𝑛))⊤ = 𝐸 ̂𝛾 = 𝑆𝜆𝑌 , with 𝑆𝜆 = 𝐸(𝐸⊤𝐸+𝛾Ω)𝐸⊤

⇒ smoothing splines are linear smoothers
The matrix 𝑆𝜆 is the hat matrix and 𝑡𝑟(𝑆𝜆) plays the role of the degrees
of freedom (how many effective parameters you have in the model)

Although there are 𝑛 unknown coefficients, many are shrunken
towards zero through the smoothness/roughness penalty
𝜆 encodes the bias-variance trade-off (𝜆 = 0 : very rough, 𝜆 = ∞:
very smooth)
𝜆 is chosen by CV (next week’s lecture)
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Orthogonal Series: Regression Splines
take a pre-defined set of orthogonal functions {𝑒𝑗}∞

𝑗=1
customarily some basis, e.g., Fourier basis, B-splines, etc.

truncate it to {𝑒𝑗}𝑝
𝑗=1

approximate 𝑚(𝑥) ≈ ∑𝑝
𝑗=1 𝛾𝑗𝑒𝑗(𝑥)

Then estimate 𝑚 by least-squares:

arg min
𝛾∈ℝ𝑝

𝑛
∑
𝑖=1

{𝑌𝑖 − 𝛾1𝑒1(𝑋𝑖) − … − 𝛾𝑝𝑒𝑝(𝑋𝑖)}
2

just a single linear regression
no penalty term, simplicity achieved via truncation

bias-variance trade-off controlled by the choice of 𝑝
can be related to smoothness when 𝑒𝑗’s get more wiggly with
increasing 𝑗 (which is typical for most bases)
choice of location of knots is critical but tricky too (not needed with
smoothing splines)
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Assignment 3 [5 %]

Go to Assignment 3 for details.
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