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KDE

One-dimensional KDE (from last week):

~ 1 & X, —
f(ﬂf):m;l(( lhnm

)

Multidimensional generalization (separable) when X7, ..., X, € R%:

- 1 & Xi1— Xia—%q
f(x) —_— W;K<h> .....K<h
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Section 1




Non-parametric Regression Setup

@ we observe i.i.d. copies of a bivariate random vector (X,Y)"
e arandom sample (X;,Y))", ..., (X,,,Y,)"
@ the response variable Y is related to the covariate X through

Y;=m(X) + e, E(e)=0 andvar() = o?

@ we are interested in the conditional expectation of Y given X, i.e.,
the regression function

m(zx) =EY|X =)

@ we want to avoid parametric assumptions
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Data Example

@ head acceleration Y depending on time X in a
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accident used to test crash helmets
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Local average estimator

Goal: estimate m(z) = E(Y|X = x) from (X,,Y})", ..., (X,,,Y,)" iid.

Since m(z) = E(Y|X = x), one can estimate m(x) by averaging the Ys
for which X is “close” to x

= different averaging methods and different measures of closeness yield
different estimators

The local average estimator is

S I(x—h< X, <z+h)Y,
Z?le(x—h<Xi§x+h)

n —X.
D 51[1,1>< h 1>Yi
- n —X. ’

> i %]1[—171)< A )

my,(z) =

for h >0
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Local average estimator

Local Average (h=2)
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Local Constant Regression

Since m(z) = [ yfyx(ylz)dy = W and we can now estimate

densities, let's plug in those estimators

to obtain

= The “boxcar"” kernel is replaced by a general kernel and yields the
so-called Nadaraya—\Watson kernel estimator
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Local Constant Regression
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Local Constant Regression

The Nadaraya—Watson kernel estimator

Y E(S)Y, K)o S0
i z =)o e =) W@,
= Yo K () ;auv2> 2, i)

is a weighted mean of the Y; and can be considered as a solution to the weighted
least squares:

() %WMZK< =) - 6y

For a fixed x, this is a weighted intercept-only regression, with weights given by
the kernel = estimate suffers from boundary bias

What if we went for better than intercept-only regression?
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Local Polyomial Regression

The aim is to find the local regression parameters 3(z) s.t.

B(az) = argminZK (:p _hX’> {Y, =By — B1(X; —x) — ... — B, (X; —x)P}?
peRp+1 T
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Local Polyomial Regression

The aim is to find the local regression parameters 3(z) s.t.

B(z) = argminiK (w_Xi
1

BeRP+L T h

N = Bo = Br(X, — @) = = B, (X, — )P

Why does this make sense?

Recall that the aim is to estimate m(z) = E(Y'|X = x) and hence to
minimize the SS

S (Y- m(X))

A Taylor expansion of m for x close to X is

(X; — 33>2
21

m(X,) ~ m(z)+(X,—)m (x)+ ()4t
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Local Polyomial Regression

The SS can be rewritten as

(2

Thus, Bj(m) estimates ()

o ﬁ/\(m) = BAQ@)
o m/(x) = f(x)

Finally, add a weighting kernel to make the contributions of X, dependent
on their distance to x

= [3 becomes the solution to a weighted least squares problem

B =argmin(Y — X3)TW(Y — Xp) = (XTWX) X" WY,
BeRp+1

where W is a diagonal matrix with entries depending on the kernel!
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Local Linear Regression

Choosing the order p = 1 leads to the local linear estimator

n
~ ~

(BO(IK),Bl(I)) = argminﬁe[Rz Z{Y; — 60 _ /61<XZ o I>}2K (CU — Xz) ’

=1

It can be shown that m(z) = B,(z) = S w,(2)Y;, where

| K (555) {8,,0) = (X —2) 8,1 ()}

nh S 0(@)Sy 2(x) — Si@(@“)

. n k —X
with S,, (7) = ﬁzizl (X, —2) K (th )
o Z?:l wnz(‘r) =1

= m is a linear smoother, i.e., Vz, it can be defined by a weighted
average: m(x) = Z?:l l;(x)Y; (valid for Nadaraya—Watson and any p)
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Visualization

A shiny App can be found here
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https://shinyserv.es/shiny/kreg/

Bias and Variance

For local linear regression, similarly to KDE and under regularity
assumptions on m, f, K, h, and nh,,

bias{m(z)} = %m”(m)h% / 2?K(2)dz + op(h})

o) [(KGYd:(1
war(e) = T NS o, ()

n n
where 0%(x) = var(Y;| X, = x) is the conditional/local variance

This implies that

@ the bias depends on the curvature of m: negative for concave and
positive for convex regions

@ the variance decreases at a rate inversely proportional to the effective
sample size nh,,

For other orders, similar expressions can be obtained
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Nadaraya—Watson vs Local Linear estimator

It can be shown that, under the same smoothing conditions on f(z) and
m(x), the Nadaraya-Watson estimator m

@ has the same variance as the local linear estimator m

@ has bias

bias{m(x)} = h%{;m”(m) +m/(z) J;((;; } /z2K(z)dz +op(h2)

= At the boundary points, the NW estimator bears high value due to the
large absolute value of f'(x)/f(x)

= Local linear estimation has no boundary bias at it does not depend on
f(z) (no design bias)
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Bandwidth Selection

Similarly to what we did last week with KDEs, we consider

MSE{m(z)} = var{m(z)} + [bias{m(z)}]”

and, dropping the little-o terms, we obtain

AMSE{f(x)} = 2 f){({[; }d'z+i m’ (2))2h4 ( / Z2K(z)dz>.

Now, a local bandwidth choice can be obtained by optimizing AMSE.
Taking derivatives and setting them to zero, we obtain

hop(z) =n~1/? o?(z) [{K(2) }de T/s
(m" () [ 2K(2)d=} fx (o
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Bandwidth Selection

1/5
15 o%(z) f{K }de

{m”(z) [ 22K (2 dz} fx(x

This is somewhat more complicated compared to the KDE case, because
we have to estimate

hopt<x) =n

@ the marginal density fy(x),
o let's say that we already know how to do this, e.g., by KDE even
though that requires a choice of yet another bandwidth

e the local variance function o?(x) = var(Y;|X; = x), and
@ the second derivative of the regression function m” (x)

Again, like in the case of KDEs, the global bandwidth choice can be
obtained by integration:

o calculate AMISE(m) = [ AMSE{m(z)}dz, and
@ set hyyrsp = argmm AMISE(m)
h>0
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Rule of Thumb Plug-in Algorithm

Replace the unknown quantities in

PP S ) (LT
AMISE [ 22K (z)dz [{m"(z }Qfx()

by parametric OLS estimators

@ Assume homoscedasticity and a quartic kernel, then

_ 3502 |supp(X 1/ p
hapise =n 1/5 <|9(>|> y by = /{m <$>}2fx(90)d$
22

@ Block the sample in NV blocks and fit, in each block j, the model
Yi = Boj + By + Boya} + Bayxi + Byjai + ¢

to obtain estimate m;(z;) = 50; + 51j$ + 52]% + ﬂ331‘1 + ﬁ4j ;
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Rule of Thumb Plug-in Algorithm

@ Estimate the unknown quantities by
R 1 n N
032 (N) = n Z Z m}’(Xi)m}’(Xi)]lxiexj

FHN) = e D S Yy (X) Py e,

Remark Unknown quantities can also be replaced by non-parametric
estimates, using a pilot bandwidth (see lecture notes for details).
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https://math-517.github.io/math_517_website/notes/week_04.html

Why Local Linear?

Bias and variance can be calculated similarly also for higher order local
polynomial regression estimators. In general:

@ bias decreases with an increasing order
@ variance increases with increasing order, but only for
p=2k+1 — p+1, i.e., when increasing an odd order to an even one

For this reason, odd orders are preferred to even ones

@ p =1 is easy to grasp as it corresponds to locally fitted simple
regression line
@ increasing p has a similar effect to decreasing the bandwidth A
e hence p =1 is usually fixed and only & is tuned
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Section 2




Smoothing Splines

Consider the optimization problem

rgmin > (7, g00)Y 2 [ o7 @) e

geC? T

@ measure of closeness to the data, and
@ smoothing penalty: A > 0 controls the trade-off between fit and smoothness

Unique solution: the natural cubic spline

- piece-wise cubic polynomial between
-knotsat X;, i =1,...,n

- two continuous derivatives at the knots
-m”(xy) =m"(z,) =0

= it has n free parameters

Source: Wood (2017)

00 02 04 06 08

Linda Mhalla Week 4: Nonparametric Regression 2024-10-04 23/28


http://www.taylorfrancis.com/books/mono/10.1201/9781315370279/generalized-additive-models-simon-wood

Cubic Spline Basis

A natural cubic spline g with n knots can be expressed w.r.t. the natural
cubic spline basis {e;} (a set of basis functions) as

n
m(z) = Zvjej(w)
j=1
>§: -]
N
=2 °
N N
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Smoothing Splines

A natural cubic spline g with n knots can be expressed w.r.t. the natural
cubic spline basis {e;} (a set of basis functions) as

m(@) =3 ye(e)

Let

e v= (Y-, € R"™ be unknown coefficients

o E:=(e):= {ej(mi)}i7j:1 € R™™ and

o Q= (w;;) € R with w,; = [ef (x)e](x)dx
Then, the optimisation problem becomes

S em(x) 4 [ @) e =

= (Y—Evy) (Y—Ey)+\Qy
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Smoothing Splines

The solution is obtained in closed form
¥y=(ETE+)\)ETY

The fitted values are

Y = (g (21), ...,y (2,))T = By = S,Y, with S, = E(ETE+yQ)ET
= smoothing splines are linear smoothers

The matrix Sy is the hat matrix and ¢r(S}) plays the role of the degrees
of freedom (how many effective parameters you have in the model)

@ Although there are n unknown coefficients, many are shrunken
towards zero through the smoothness/roughness penalty

@ ) encodes the bias-variance trade-off (A = 0 : very rough, A = oc:
very smooth)

@ \is chosen by CV (next week's lecture)
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Orthogonal Series: Regression Splines

o take a pre-defined set of orthogonal functions {e;}5%,
e customarily some basis, e.g., Fourier basis, B-splines, etc.

o truncate it to {e;}}_;
@ approximate m(x) ~ Z;):l vie;(z)

Then estimate m by least-squares:

2
arg gunz {Y Y161 (X ) L Vpep(Xi>}
YERP =1

@ just a single linear regression
@ no penalty term, simplicity achieved via truncation
o bias-variance trade-off controlled by the choice of p
o can be related to smoothness when e;'s get more wiggly with
increasing j (which is typical for most bases)
o choice of location of knots is critical but tricky too (not needed with

smoothing splines)

Linda Mhalla Week 4: Nonparametric Regression 2024-10-04 27/28



Assignment 3 [5 %]

Go to Assignment 3 for details.
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https://math-517.github.io/math_517_website/assignments/assignment-03.html
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