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Motivation

Over the last two lectures, we've covered KDE and non-parametric
regression methods

Both required the choice of a certain tuning parameter

e KDE, h >0

1 n
— K
nh Z ( )
@ Local Polynomial Regression (with a fixed degree p), h > 0

argmlnz{y Bo— B (X;—x)— "'_ﬁP<Xi_x)p}2K<Xih_x>
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Motivation

Many other modern methods for regression can be expressed as

@ penalized regression
al 2
arg;nin Z (y,, —z,B)" + AR(B),
n=1

where R is a penalty, e.g., |

- |2 for ridge regression or | - ||, for lasso

= regularize to get sparsity or reduce variability (multicollinearity), or

@ smoothing splines

argmm Z{yn WP+ A /{f” )}2dx

= regularize to induce smoothness

In all cases, cross-validation (CV) can be used to select the tuning parameters

@ not always straightforward!
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Bias-variance Trade-off

Error
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Bias-variance Trade-off: Smoothing splines

A too small X just right 2 to0 big
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Purpose of Cross-validation
Cross-validation (CV) is a very general method for

@ tuning the regularization parameter of a method
@ estimating the predictive power of a method

Since training an algorithm and evaluating its performance on the same data
yields an overoptimistic result, CV fixes the issue by testing the output of a
method on (independent) “new data”

CV estimates the prediction error of an algorithm (e.g., regression or
classification)

TestError( f)\ Zﬁ{yn, falzn)}

that is different from

TrainError( f,\ Zg{ymf,\ )}
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Purpose of Cross-validation

CV involves

@ splitting a data set into a training data set and a test data set

o fitting the model using the training data set

@ using the test data set to evaluate how the model performs
(according to a measure of error /risk)

@ computing the average over several splits (several splitting strategies
exist!)
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Section 1




Local Polynomial Regression

Setup: A sample (z,,y;)", ..., (xn,yy)" € R? from a population
Y =m(X) + e with X L e. For a fixed bandwidth h, we estimate
m(x) = E(Y|X = x) as my,(x) by, e.g., local linear regression.

Question: How to choose h? (i.e., how to obtain a good bias-variance
trade-off?)

What is the measure of how good our estimator m, (x) for a given
bandwidth is?

MISE(m,) = [ £ (@) - m()} fy(o)ds

@ let's choose h that minimizes the (density-weighted) MISE

Here, what matters is to minimize the estimation error on the regions
where the density of X is higher
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Local Polynomial Regression

But we don’t know m. How about using the average RSS

1 & - 2
N Z {Yn - mh<Xn>}
n=1
as a proxy for the MISE?

That's a bad idea, because {Y,, — /nih(Xn)}2 —0forh—0

o this is called overfitting (useless interpolation)
@ the problem lies in validating on data used to fit the model (favours
estimates too well-adapted to data and unreasonable for new obs.)

Instead, consider this to approximate the MISE:

2

CV(h) = % Sy, —my (X)),

where nA"L({n) (X,,) is the model fitted without the n-th observation
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CV for Local Polynomial Regression

L\ ~(=n)
CV(h) =5 > Yo =1, " (X,)}

n=1

Since Y = m(X) + €, we can write

MISE(my,) = [X,Y{mh(X> —m(X)}
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CV for Prediction

More generally: (z1,%,)", ..., (z5,yy)' € RPT!
Model for prediction: ¥ = m(X)
How good is the model: measured by a loss function, e.g., [E{Y—’I?A”L(X)}Q

@ other losses possible, e.g., if undershooting better than overshooting

If another data set (z7},y})", ..., (2%, vy};) | available (generated by the
same process as the original data set), we can approximate loss empirically

1 M
0 2 = M

CV is the alternative when no other data set is available:
2

V) = 1D~ A}

where m(~™) is the model fitted without the n-th observation
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CV for Model Selection

—

CV can also be used to compare candidate models m, ... ;M

@ can be completely different models
e typically it is the same model with different tuning parameter values
@ select the model for which the CV criterion is minimized
@ beware: when not in the “vanilla” iid case (e.g. times series, stratified
data, etc.), things are not so straightforward..

But there are computational costs. The model has to be re-fitted for

@ all the tuning parameter values considered

@ every data point left out
o actually, this might not be necessary...
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Computational Shortcut for Linear Smoothers

If m is a linear smoother, i.e., the predictions y,, = m(z,,) are given all
together as

y =Sy
where S € RV*Y depends on z's, then re-fitting (leaving out data points
one by one) may not be necessary!

Example: Ridge regression is a linear smoother

argmmz n—2nB) +ABI3.

0o B=(XTX+ )Xy
°oy= X(XTX—l—)\I) IXTy

Ly a1y EANN
NZ{yn_an } _N;{ 1—3 }
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Example: Ridge Regression

Noticing 3™ = (X X + M —x,x/ ) 1(X Ty —x,y,), we can use
Sherman-Morrison formula:

e denoting A := XX + \I
0, =1—x A"1x,

“lg T A1
CATX XA

g = (Al 1—anA—1x) X'y —x,9,)
8

n

1 ~
; (Ailxnxgﬁ - Ailxnyn) .

Plug this back into the general CV formula and do some simple algebra to
obtain the last formula on the previous slide

@ check out lecture notes for details, if interested
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https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula

Computational Shortcut for Linear Smoothers

A similar computational shortcut is possible for the linear smoothers

linear models
local constant regression
e what about other polynomial orders?
ridge regression
smoothing splines
KDE (when working on a grid),

as long as the LOOCV is built on the squared error loss

On the other hand, such shortcuts are not possible for

@ lasso
@ many other penalized or otherwise complicated estimators

When a computational shortcut is impossible, perform K-fold CV instead!
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K-fold CV

Divide the set {1,..., N} into K subsets (folds) of approximately equal
size, Jy, ..., Jg, such that

e fold J, C {1,...,N} for k =1,..., K such that J, N J,, = () for
k# K and U, Jp = {1,...,N}
Fork=1,..., K:

e Consider training on (z,,y,), i ¢ Ji, and validating on (x;,y;), i € J,,
o Fit the model on the training set and compute the error on the

validation set
ey =Y {y, —mW(z,)}?
neJy

where m(=7) is the model fitted without the data in the k-th fold J,,
@ Compute the average error over all folds

In practice, choose K =5 or K = 10, perform random permutation of

indices and split the data
Linda Mhalla Week 5: Cross-validation 2024-10-11 17 /32



K-fold CV

Instead of the (leave-one-out) CV criterion

1 Y = (—n) 2
:NZ{yn_m (xn>} )
n=1

use the K-fold CV criterion:

CVie() = K- Z|Jk| Yy, - (x,))

neJy,

@ requires every candidate model to be fitted K-times

e it is difficult to study properties of C'V- () properly. One usually
examines whether leave-one-out CV works and, if yes and if no
computational shortcuts available, resorts to K-fold CV for
computational reasons
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Properties of the CV schemes

e LOOCYV is approximately unbiased for the true prediction error (bias
comes from using N — 1 observations)

@ LOOCYV has typically high variance (doesn’t shake up the data
enough)

e K-fold CV has higher bias than LOOCV (training sets have smaller
size)

@ K =5 or 10 provides a good compromise for the bias-variance

trade-off

Validation approach estimates the prediction error with high variance

(depends on the unique split)
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Section 2




Bandwidth Selection for KDE

Sample X1, ..., Xy from f, goal is to estimate f(x) by
N

) = 5 oK (25

=1

@ no response here!

A good estimator (a well-chosen k) minimizes
MISE(f) =E [ {fula) = f(a)} da
_[E/{fh )Vdo 2[E/fh dx+/{f(x)}2da:.

\|fh(;r)|\2 A(h): the CV idea? no h here
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Bandwidth Selection for KDE

Sample X1, ..., Xy from f, goal is to estimate f(x) by
N

) = 5 oK (25

=1

@ no response here!

A good estimator (a well-chosen k) minimizes
MISE(f) =E [ {fula) = f(a)} da
_[E/{fh )Vdo 2[E/fh dx+/{f(x)}2da:.

\|fh(;r)|\2 A(h): the CV idea? no h here

Let’s find an unbiased estimator of A(h)!
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Bandwidth Selection for KDE

The CV idea: see how your estimator behaves on a left-out datum:

e 1 X,—X;\ 1 X, — X
Ef, )(X"):[EanK( h ]>:h[EX1’X2{K( T 2)}

[ [ f(o)dy f(a)dz = E [ Fyl@)f(a)da.

= N1 ZN7 f(fn)(X,n) is an unbiased estimator of E [ f, (z)f(x)dx

Efn ()

Thus, up to the constant (not depending on h), an unbiased estimator of

MISE() = [ [fy@) e —2E [ @) f@de+ [ (1) da.
is given by the CV

cvin) = [ [fala) dwwth X,)
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Bandwidth Selection for KDE

The computational formula for CV(h) is given by

:1

(X — X y>dy NN T i;(

The optimal bandwidth is then given by

’)

hope = argmin CV (h)
h>0

@ Numerical optimisation is required

@ The roughness of the objective function depends on n and f = might have
several local minima

= Always check the solution by plotting C'V'(h) for a range of h
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Bandwidth Selection for KDE

Objective function
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CV for PCA

(1) linear combinations

with maximal variance argmax v' Lv
T oy—
(Pearson, 1901) vio=l
2 - . | n
minimum least square : T2
@)  least <q argmin Y |a; — VV a3
error projection into viv=I 7=

lower dimension
(Hotelling, 1933)

(3) best low-rank matrix
approximation
(Eckart & Young,
1936)

argmin |X — L|3
rank(L)=r
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(1)-(2) Optimisation problems

(]
°
' Aximize variance Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction

Two equivalent views of principal component analysis.
Source: this blog
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http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/

(3) Low-rank Matrix Approximation

Visualization for r = 3:

~ _
-NI

X~L=AB' :ZaiviT
i=1
The tall and skinny matrix A and the short and fat matrix B are obtained
by truncating the SVD decomposition: X = UDV'' to keep the r top
singular values of X (A = U,,CD,?2 and B = Vlelc/Q)
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CV for PCA

In all formulations, there is a hyperparameter (< p)!

Let’'s focus on the third formulation of PCA

argmin |X — L|3
rank(L)=r

How to choose the rank r? Some proposed the following K-fold CV scheme:

@ split data into K folds J;, ..., Jg
o fork=1,...K
e solve L = argmin |X[J¢,] — L|3
rank(L)=r
o calculate Err,(r) = Z%Jk |z, — Pfan%
@ end for

@ choose 7 = argmin 25:1 |Je| L Err (1)
T

But this is wrong! (as 7 we have |x; — Prx;| \, so r is overestimated)
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CV for PCA

Try holding out rows.... Try holding out columns....
U vt Y U VT Y

4\ [this is a problem
this is a problem %

Not so great ideas for cross-validating matrix factorization.

Source: this blog

Problems with holding out a whole column (or row) of the data matrix are
discussed in more detail by Bro et al. (2008) and Owen & Perry (2009)

There are smarter holdout patterns

@ Wold hold-out: requires an SVD decomposition with missing data as
entries are held-out at random

@ Gabriel hold-out: transforms the unsupervised learning problem into a
supervised one by holding-out a block of the data matrix
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http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/
https://link.springer.com/article/10.1007/s00216-007-1790-1
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-3/issue-2/Bi-cross-validation-of-the-SVD-and-the-nonnegative-matrix/10.1214/08-AOAS227.full

Intermezzo: Linear Prediction for Gaussian Vectors

For X ~ N (u,X) split into

X W by by
X = 1>’ :<1>7 E:<11 12)7
<X2 a 1253 Yig Yo

the conditional expectation of X; given X, is given by

[EH,Z[XﬂXz =Xo| = p1y + X15555 (Xg — pp)
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Intermezzo: Linear Prediction for Gaussian Vectors
For X ~ N (u,X) split into
X 1 ¥, =
X — 1>’ :<1>7 E:<11 12>’
<X2 a Mo Yo Yoo
the conditional expectation of X; given X, is given by

[EH,Z[XﬂXz =Xo| = p1y + X15555 (Xg — pp)

Assume we have a sample X1, ..., X from which we obtain estimators [i
and 3, and a new incomplete observation X* = (X7, X3)", where only
X3 is observed. We simply predict the missing part by

X7 = g + 215355 (x5 — pia)
Even without Gaussianity, this is the best linear unbiased predictor (BLUP)

@ The quality of BLUP depends on that of the estimators /i and by
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CV for PCA Repaired

Assume that data x,, € RP are i.i.d. realizations of X ~ N (u,X).

@ split data into K folds J;, ..., Jx
efork=1,...,K
e estimate ;1 and ¥ empirically using all but the k-th fold J;, but
truncate ¥ to be rank-r
e forn € J,
o split x,, into a “missing” part x™*°¢ that will be used for validation
and an “observed” part x°%¢

o predict x*¢¢ from x%°° as discussed on the previous slide
e end for
_ obs ,miss\T obs Gmiss\T |2
o calculate E’I“T'k(’l“) - EneJk ”(Xn » X, ) - (Xn » Xn ) HQ
e end for

@ choose 7 = argmin Zle | Je| L Erry(r)
T

Is there a bias-variance trade-off now?
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Assignment 4 [5 %]

Go to Assignment 4 for details.
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https://math-517.github.io/math_517_website/assignments/assignment-04.html
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