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Motivation

Over the last two lectures, we’ve covered KDE and non-parametric
regression methods

Both required the choice of a certain tuning parameter

KDE, ℎ > 0
̂𝑓(𝑥) = 1

𝑛ℎ
𝑛

∑
𝑖=1

𝐾 (𝑋𝑖 − 𝑥
ℎ )

Local Polynomial Regression (with a fixed degree 𝑝), ℎ > 0

arg min
𝛽∈ℝ𝑝+1

𝑛
∑
𝑖=1

{𝑌𝑖 − 𝛽0 − 𝛽1(𝑋𝑖 − 𝑥) − … − 𝛽𝑝(𝑋𝑖 − 𝑥)𝑝}2𝐾 (𝑋𝑖 − 𝑥
ℎ )
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Motivation
Many other modern methods for regression can be expressed as

penalized regression

arg min
𝛽

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑥⊤
𝑛𝛽)2 + 𝜆𝑅(𝛽),

where 𝑅 is a penalty, e.g., ‖ ⋅ ‖2
2 for ridge regression or ‖ ⋅ ‖1 for lasso

⇒ regularize to get sparsity or reduce variability (multicollinearity), or

smoothing splines

arg min
𝛽

𝑁
∑
𝑛=1

{𝑦𝑛 − 𝑓(𝑥𝑛)}2 + 𝜆 ∫{𝑓″(𝑥)}2𝑑𝑥

⇒ regularize to induce smoothness

In all cases, cross-validation (CV) can be used to select the tuning parameters

not always straightforward!
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Bias-variance Trade-off

Linda Mhalla Week 5: Cross-validation 2024-10-11 4 / 32



Bias-variance Trade-off: Smoothing splines
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Purpose of Cross-validation
Cross-validation (CV) is a very general method for

tuning the regularization parameter of a method
estimating the predictive power of a method

Since training an algorithm and evaluating its performance on the same data
yields an overoptimistic result, CV fixes the issue by testing the output of a
method on (independent) “new data”

CV estimates the prediction error of an algorithm (e.g., regression or
classification)

TestError( ̂𝑓𝜆) = 1
𝑁

𝑁
∑
𝑛=1

ℓ{𝑦′
𝑛, ̂𝑓𝜆(𝑥′

𝑛)}

that is different from

TrainError( ̂𝑓𝜆) = 1
𝑁

𝑁
∑
𝑛=1

ℓ{𝑦𝑛, ̂𝑓𝜆(𝑥𝑛)}

(which can be adjusted to estimate TestError( ̂𝑓𝜆). How?)Linda Mhalla Week 5: Cross-validation 2024-10-11 6 / 32



Purpose of Cross-validation

CV involves

splitting a data set into a training data set and a test data set
fitting the model using the training data set
using the test data set to evaluate how the model performs
(according to a measure of error/risk)
computing the average over several splits (several splitting strategies
exist!)
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Section 1

CV for Supervised Problems
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Local Polynomial Regression

Setup: A sample (𝑥1, 𝑦1)⊤, … , (𝑥𝑁 , 𝑦𝑁)⊤ ∈ ℝ2 from a population
𝑌 = 𝑚(𝑋) + 𝜖 with 𝑋 ⟂⟂ 𝜖. For a fixed bandwidth ℎ, we estimate
𝑚(𝑥) = 𝔼(𝑌 |𝑋 = 𝑥) as 𝑚̂ℎ(𝑥) by, e.g., local linear regression.

Question: How to choose ℎ? (i.e., how to obtain a good bias-variance
trade-off?)

What is the measure of how good our estimator 𝑚̂ℎ(𝑥) for a given
bandwidth is?

𝑀𝐼𝑆𝐸(𝑚̂ℎ) = ∫ 𝔼{𝑚̂ℎ(𝑥) − 𝑚(𝑥)}2𝑓𝑋(𝑥)𝑑𝑥

let’s choose ℎ that minimizes the (density-weighted) MISE

Here, what matters is to minimize the estimation error on the regions
where the density of 𝑋 is higher
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Local Polynomial Regression
But we don’t know 𝑚. How about using the average RSS

1
𝑁

𝑁
∑
𝑛=1

{𝑌𝑛 − 𝑚̂ℎ(𝑋𝑛)}2

as a proxy for the MISE?

That’s a bad idea, because {𝑌𝑛 − 𝑚̂ℎ(𝑋𝑛)}2 → 0 for ℎ → 0
this is called overfitting (useless interpolation)
the problem lies in validating on data used to fit the model (favours
estimates too well-adapted to data and unreasonable for new obs.)

Instead, consider this to approximate the MISE:

𝐶𝑉 (ℎ) = 1
𝑁

𝑁
∑
𝑛=1

{𝑌𝑛 − 𝑚̂(−𝑛)
ℎ (𝑋𝑛)}2,

where 𝑚̂(−𝑛)
ℎ (𝑋𝑛) is the model fitted without the 𝑛-th observation
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CV for Local Polynomial Regression

𝐶𝑉 (ℎ) = 1
𝑁

𝑁
∑
𝑛=1

{𝑌𝑛 − 𝑚̂(−𝑛)
ℎ (𝑋𝑛)}2

Since 𝑌 = 𝑚(𝑋) + 𝜖, we can write

𝐶𝑉 (ℎ) = 1
𝑁

𝑁
∑
𝑛=1

{𝑌𝑛 − 𝑚(𝑋𝑛) + 𝑚(𝑋𝑛) − 𝑚̂(−𝑛)
ℎ (𝑋𝑛)}2

= 1
𝑁

𝑁
∑
𝑛=1

𝜖2
𝑛 + 2

𝑁
𝑁

∑
𝑛=1

𝜖𝑛{𝑚(𝑋𝑛) − 𝑚̂(−𝑛)
ℎ (𝑋𝑛)}

+ 1
𝑁

𝑁
∑
𝑛=1

{𝑚(𝑋𝑛) − 𝑚̂(−𝑛)
ℎ (𝑋𝑛)}2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝔼𝑋,𝑌 (⋆)=𝑀𝐼𝑆𝐸(𝑚̂ℎ)

,

𝑀𝐼𝑆𝐸(𝑚̂ℎ) = 𝔼𝑋,𝑌 {𝑚̂ℎ(𝑋) − 𝑚(𝑋)}2
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CV for Prediction
More generally: (𝑥1, 𝑦1)⊤, … , (𝑥𝑁 , 𝑦𝑁)⊤ ∈ ℝ𝑝+1

Model for prediction: 𝑌 = 𝑚̂(𝑋)

How good is the model: measured by a loss function, e.g., 𝔼{𝑌 − 𝑚̂(𝑋)}2

other losses possible, e.g., if undershooting better than overshooting

If another data set (𝑥⋆
1, 𝑦⋆

1)⊤, … , (𝑥⋆
𝑀 , 𝑦⋆

𝑀)⊤ available (generated by the
same process as the original data set), we can approximate loss empirically

1
𝑀

𝑀
∑
𝑘=1

{𝑦⋆
𝑘 − 𝑚̂(𝑥⋆

𝑘)}2

CV is the alternative when no other data set is available:

𝐶𝑉 (𝑚̂) ∶= 1
𝑁

𝑁
∑
𝑛=1

{𝑦𝑛 − 𝑚̂(−𝑛)(𝑥𝑛)}2,

where 𝑚̂(−𝑛) is the model fitted without the 𝑛-th observation
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CV for Model Selection

CV can also be used to compare candidate models 𝑚̂1, … , 𝑚̂𝑗

can be completely different models
typically it is the same model with different tuning parameter values

select the model for which the CV criterion is minimized
beware: when not in the “vanilla” iid case (e.g. times series, stratified
data, etc.), things are not so straightforward…

But there are computational costs. The model has to be re-fitted for

all the tuning parameter values considered
every data point left out

actually, this might not be necessary…
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Computational Shortcut for Linear Smoothers
If 𝑚̂ is a linear smoother, i.e., the predictions ̂𝑦𝑛 = 𝑚̂(𝑥𝑛) are given all
together as

ŷ = Sy
where S ∈ ℝ𝑁×𝑁 depends on 𝑥’s, then re-fitting (leaving out data points
one by one) may not be necessary!

Example: Ridge regression is a linear smoother

arg min
𝛽

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑥⊤
𝑛𝛽)2 + 𝜆‖𝛽‖2

2.

̂𝛽 = (X⊤X + 𝜆𝐼)−1X⊤y
ŷ = X(X⊤X + 𝜆𝐼)−1X⊤⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶S
y

𝐶𝑉 (𝜆) = 1
𝑁

𝑁
∑
𝑛=1

{𝑦𝑛 − x⊤
𝑛 ̂𝛽(−𝑛)}

2
= 1

𝑁
𝑁

∑
𝑛=1

{𝑦𝑛 − 𝑚̂(𝑥𝑛)
1 − 𝑠𝑛𝑛

}
2
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Example: Ridge Regression

Noticing ̂𝛽(−𝑛) = (X⊤X + 𝜆𝐼 − x𝑛x⊤
𝑛)−1(X⊤y − x𝑛𝑦𝑛), we can use

Sherman-Morrison formula:

denoting A ∶= X⊤X + 𝜆𝐼
𝛼𝑛 ∶= 1 − x⊤

𝑛A−1x𝑛

̂𝛽(−𝑛) = (A−1 − A−1x𝑛x⊤
𝑛A−1

1 − x⊤𝑛A−1x𝑛
) (X⊤y − x𝑛𝑦𝑛)

= ̂𝛽 − 1
𝛼𝑛

(A−1x𝑛x⊤
𝑛 ̂𝛽 − A−1x𝑛𝑦𝑛).

Plug this back into the general CV formula and do some simple algebra to
obtain the last formula on the previous slide

check out lecture notes for details, if interested
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Computational Shortcut for Linear Smoothers

A similar computational shortcut is possible for the linear smoothers

linear models
local constant regression

what about other polynomial orders?
ridge regression
smoothing splines
KDE (when working on a grid),

as long as the LOOCV is built on the squared error loss

On the other hand, such shortcuts are not possible for

lasso
many other penalized or otherwise complicated estimators

When a computational shortcut is impossible, perform 𝐾-fold CV instead!
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𝐾-fold CV
Divide the set {1, … , 𝑁} into 𝐾 subsets (folds) of approximately equal
size, 𝐽1, … , 𝐽𝐾, such that

fold 𝐽𝑘 ⊂ {1, … , 𝑁} for 𝑘 = 1, … , 𝐾 such that 𝐽𝑘 ∩ 𝐽𝑘′ = ∅ for
𝑘 ≠ 𝑘′ and ⋃𝐾

𝑘=1 𝐽𝑘 = {1, … , 𝑁}
For 𝑘 = 1, … , 𝐾:

Consider training on (𝑥𝑖, 𝑦𝑖), 𝑖 ∉ 𝐽𝑘, and validating on (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ 𝐽𝑘
Fit the model on the training set and compute the error on the
validation set

𝑒𝑘 = ∑
𝑛∈𝐽𝑘

{𝑦𝑛 − 𝑚̂(−𝐽𝑘)(𝑥𝑛)}2

where 𝑚(−𝐽𝑘) is the model fitted without the data in the 𝑘-th fold 𝐽𝑘
Compute the average error over all folds

In practice, choose 𝐾 = 5 or 𝐾 = 10, perform random permutation of
indices and split the data
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𝐾-fold CV

Instead of the (leave-one-out) CV criterion

𝐶𝑉 (𝑚̂) ∶= 1
𝑁

𝑁
∑
𝑛=1

{𝑦𝑛 − 𝑚̂(−𝑛)(𝑥𝑛)}2,

use the 𝐾-fold CV criterion:

𝐶𝑉𝐾(𝑚̂) = 𝐾−1
𝐾

∑
𝑘=1

|𝐽𝑘|−1 ∑
𝑛∈𝐽𝑘

{𝑌𝑛 − 𝑚̂(−𝐽𝑘)(𝑋𝑛)}2.

requires every candidate model to be fitted 𝐾-times
it is difficult to study properties of 𝐶𝑉𝐾(𝑚̂) properly. One usually
examines whether leave-one-out CV works and, if yes and if no
computational shortcuts available, resorts to 𝐾-fold CV for
computational reasons
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Properties of the CV schemes

LOOCV is approximately unbiased for the true prediction error (bias
comes from using 𝑁 − 1 observations)
LOOCV has typically high variance (doesn’t shake up the data
enough)
𝐾-fold CV has higher bias than LOOCV (training sets have smaller
size)
𝐾 = 5 or 10 provides a good compromise for the bias-variance
trade-off
Validation approach estimates the prediction error with high variance
(depends on the unique split)
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Section 2

CV for Unsupervised Problems
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Bandwidth Selection for KDE
Sample 𝑋1, … , 𝑋𝑁 from 𝑓 , goal is to estimate 𝑓(𝑥) by

̂𝑓ℎ(𝑥) = 1
𝑛ℎ

𝑁
∑
𝑖=1

𝐾 (𝑋𝑖 − 𝑥
ℎ )

no response here!

A good estimator (a well-chosen ℎ) minimizes

𝑀𝐼𝑆𝐸( ̂𝑓ℎ) = 𝔼 ∫ { ̂𝑓ℎ(𝑥) − 𝑓(𝑥)}2𝑑𝑥

= 𝔼 ∫ { ̂𝑓ℎ(𝑥)}2𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟

‖ ̂𝑓ℎ(𝑥)‖2
2

−2 𝔼 ∫ ̂𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟

𝐴(ℎ)∶ the CV idea?

+ ∫ {𝑓(𝑥)}2𝑑𝑥
⏟⏟⏟⏟⏟

no ℎ here

.

Let’s find an unbiased estimator of 𝐴(ℎ)!
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Bandwidth Selection for KDE
Sample 𝑋1, … , 𝑋𝑁 from 𝑓 , goal is to estimate 𝑓(𝑥) by

̂𝑓ℎ(𝑥) = 1
𝑛ℎ

𝑁
∑
𝑖=1

𝐾 (𝑋𝑖 − 𝑥
ℎ )

no response here!

A good estimator (a well-chosen ℎ) minimizes

𝑀𝐼𝑆𝐸( ̂𝑓ℎ) = 𝔼 ∫ { ̂𝑓ℎ(𝑥) − 𝑓(𝑥)}2𝑑𝑥

= 𝔼 ∫ { ̂𝑓ℎ(𝑥)}2𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟

‖ ̂𝑓ℎ(𝑥)‖2
2

−2 𝔼 ∫ ̂𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟

𝐴(ℎ)∶ the CV idea?

+ ∫ {𝑓(𝑥)}2𝑑𝑥
⏟⏟⏟⏟⏟

no ℎ here

.

Let’s find an unbiased estimator of 𝐴(ℎ)!
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Bandwidth Selection for KDE
The CV idea: see how your estimator behaves on a left-out datum:

𝔼 ̂𝑓 (−𝑛)
ℎ (𝑋𝑛) = 𝔼 1

(𝑛 − 1)ℎ ∑
𝑗≠𝑛

𝐾 (𝑋𝑛 − 𝑋𝑗
ℎ ) = 1

ℎ𝔼𝑋1,𝑋2
{𝐾 (𝑋1 − 𝑋2

ℎ ) }

= ∫ ∫ 1
ℎ𝐾 (𝑥 − 𝑦

ℎ ) 𝑓(𝑦)𝑑𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝔼 ̂𝑓ℎ(𝑥)

𝑓(𝑥)𝑑𝑥 = 𝔼 ∫ ̂𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥.

⇒ 𝑁−1 ∑𝑁
𝑛=1

̂𝑓 (−𝑛)
ℎ (𝑋𝑛) is an unbiased estimator of 𝔼 ∫ ̂𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥

Thus, up to the constant (not depending on ℎ), an unbiased estimator of

𝑀𝐼𝑆𝐸( ̂𝑓ℎ) = 𝔼 ∫ [ ̂𝑓ℎ(𝑥)]2𝑑𝑥 − 2𝔼 ∫ ̂𝑓ℎ(𝑥)𝑓(𝑥)𝑑𝑥 + ∫ [𝑓(𝑥)]2𝑑𝑥.

is given by the CV

𝐶𝑉 (ℎ) = ∫ [ ̂𝑓ℎ(𝑥)]2𝑑𝑥 − 2
𝑁

𝑁
∑
𝑛=1

̂𝑓 (−𝑛)
ℎ (𝑋𝑛)
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Bandwidth Selection for KDE

The computational formula for 𝐶𝑉 (ℎ) is given by

1
𝑁2ℎ

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

∫ 𝐾(𝑦)𝐾(𝑋𝑖 − 𝑋𝑗
ℎ −𝑦)𝑑𝑦 − 2

𝑁(𝑁 − 1)ℎ
𝑁

∑
𝑗=1

∑
𝑖≠𝑗

𝐾(𝑋𝑖 − 𝑥𝑗
ℎ )

The optimal bandwidth is then given by

ℎ𝑜𝑝𝑡 = arg min
ℎ>0

𝐶𝑉 (ℎ)

Numerical optimisation is required
The roughness of the objective function depends on 𝑛 and 𝑓 ⇒ might have
several local minima

⇒ Always check the solution by plotting 𝐶𝑉 (ℎ) for a range of ℎ
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Bandwidth Selection for KDE
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CV for PCA

(1) linear combinations
with maximal variance
(Pearson, 1901)

(2) minimum least square
error projection into
lower dimension
(Hotelling, 1933)

(3) best low-rank matrix
approximation
(Eckart & Young,
1936)

arg max
𝑣⊤𝑣=1

𝑣⊤Σ̂𝑣

arg min
𝑉 ⊤𝑉 =𝐼𝑟

𝑛
∑
𝑖=1

‖𝑥𝑖 − VV⊤𝑥𝑖‖2
2

arg min
rank(L)=𝑟

‖X − L‖2
2
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(1)-(2) Optimisation problems

Source: this blog
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(3) Low-rank Matrix Approximation

Visualization for 𝑟 = 3:

≈

X ≈ L = AB⊤ =
𝑟

∑
𝑖=1

a𝑖v⊤
𝑖

The tall and skinny matrix 𝐴 and the short and fat matrix 𝐵 are obtained
by truncating the SVD decomposition: X = UDV⊤ to keep the 𝑟 top
singular values of 𝑋 (𝐴 = 𝑈𝑘𝐷1/2

𝑘 and 𝐵 = 𝑉𝑘𝐷1/2
𝑘 )
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CV for PCA

In all formulations, there is a hyperparameter 𝑟(< 𝑝)!
Let’s focus on the third formulation of PCA

arg min
rank(L)=𝑟

‖X − L‖2
2

How to choose the rank 𝑟? Some proposed the following 𝐾-fold CV scheme:

split data into 𝐾 folds 𝐽1, … , 𝐽𝐾
for 𝑘 = 1, … , 𝐾

solve L̂ = arg min
rank(L)=𝑟

‖X[𝐽𝑐
𝑘 , ] − L‖2

2

calculate 𝐸𝑟𝑟𝑘(𝑟) = ∑𝑛∈𝐽𝑘
‖𝑥𝑛 − 𝑃𝐿̂𝑥𝑛‖2

2
end for
choose ̂𝑟 = arg min

𝑟
∑𝐾

𝑘=1 |𝐽𝑘|−1𝐸𝑟𝑟𝑘(𝑟)

But this is wrong! (as 𝑟 ↗ we have ‖𝑥𝑗 − 𝑃𝐿̂𝑥𝑗‖ ↘, so 𝑟 is overestimated)
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CV for PCA

Source: this blog

Problems with holding out a whole column (or row) of the data matrix are
discussed in more detail by Bro et al. (2008) and Owen & Perry (2009)

There are smarter holdout patterns

Wold hold-out: requires an SVD decomposition with missing data as
entries are held-out at random
Gabriel hold-out: transforms the unsupervised learning problem into a
supervised one by holding-out a block of the data matrix

Linda Mhalla Week 5: Cross-validation 2024-10-11 29 / 32

http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/
https://link.springer.com/article/10.1007/s00216-007-1790-1
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-3/issue-2/Bi-cross-validation-of-the-SVD-and-the-nonnegative-matrix/10.1214/08-AOAS227.full


Intermezzo: Linear Prediction for Gaussian Vectors
For 𝑋 ∼ 𝒩(𝜇, Σ) split into

𝑋 = (𝑋1
𝑋2

) , 𝜇 = (𝜇1
𝜇2

) , Σ = (Σ11 Σ12
Σ12 Σ22

) ,

the conditional expectation of 𝑋1 given 𝑋2 is given by

𝔼𝜇,Σ[𝑋1∣𝑋2 = x2] = 𝜇1 + Σ12Σ−1
22 (x2 − 𝜇2)

Assume we have a sample 𝑋1, … , 𝑋𝑁 from which we obtain estimators ̂𝜇
and Σ̂, and a new incomplete observation 𝑋⋆ = (𝑋⋆

1, 𝑋⋆
2)⊤, where only

𝑋⋆
2 is observed. We simply predict the missing part by

𝑋⋆
1 = ̂𝜇1 + Σ̂12Σ̂−1

22 (x2 − 𝜇2)
Even without Gaussianity, this is the best linear unbiased predictor (BLUP)

The quality of BLUP depends on that of the estimators ̂𝜇 and Σ̂
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CV for PCA Repaired

Assume that data x𝑛 ∈ ℝ𝑝 are i.i.d. realizations of 𝑋 ∼ 𝒩(𝜇, Σ).
split data into 𝐾 folds 𝐽1, … , 𝐽𝐾
for 𝑘 = 1, … , 𝐾

estimate 𝜇 and Σ empirically using all but the 𝑘-th fold 𝐽𝑘, but
truncate Σ to be rank-𝑟
for 𝑛 ∈ 𝐽𝑘

split x𝑛 into a “missing” part x𝑚𝑖𝑠𝑠 that will be used for validation
and an “observed” part x𝑜𝑏𝑠

predict x𝑚𝑖𝑠𝑠
𝑛 from x𝑜𝑏𝑠

𝑛 as discussed on the previous slide
end for
calculate 𝐸𝑟𝑟𝑘(𝑟) = ∑𝑛∈𝐽𝑘

‖(x𝑜𝑏𝑠
𝑛 , x𝑚𝑖𝑠𝑠

𝑛 )⊤ − (x𝑜𝑏𝑠
𝑛 , x̂𝑚𝑖𝑠𝑠

𝑛 )⊤‖2
2

end for
choose ̂𝑟 = arg min

𝑟
∑𝐾

𝑘=1 |𝐽𝑘|−1𝐸𝑟𝑟𝑘(𝑟)

Is there a bias-variance trade-off now?
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Assignment 4 [5 %]

Go to Assignment 4 for details.
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https://math-517.github.io/math_517_website/assignments/assignment-04.html
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