Week 6: The EM-Algorithm MATH-517 Statistical Computation and Visualization

Linda Mhalla

2024-10-18

1/27

Section 1

Motivation From Last Week

CV for PCA Repaired

Assume that data $\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^p$ are i.i.d. realizations of $X\sim\mathcal{N}(\mu,\Sigma)$

• split data into
$$K$$
 folds: J_1, \dots, J_K

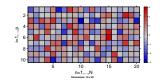
- for $k = 1, \dots, K$
 - estimate μ and Σ empirically using all but the k-th fold $J_k\text{,}$ and truncate Σ to be rank-r
 - $\bullet \ \ {\rm for} \ n \in J_k$
 - split ${\bf x}_n$ into a "missing" part ${\bf x}^{miss}$ that will be used for validation and an "observed" part ${\bf x}^{obs}$
 - $\bullet~{\rm predict}~{\bf x}_n^{miss}$ from ${\bf x}_n^{obs}$ as discussed on the previous slide
 - end for

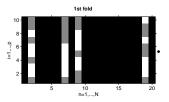
• calculate
$$Err_k(r) = \sum_{n \in J_k} \|(\mathbf{x}_n^{obs}, \mathbf{x}_n^{miss})^\top - (\mathbf{x}_n^{obs}, \hat{\mathbf{x}}_n^{miss})^\top\|_2^2$$

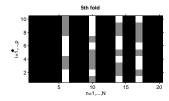
end for

• choose
$$\hat{r} = \operatorname*{arg\,min}_{r} \sum_{k=1}^{K} |J_k|^{-1} Err_k(r)$$

CV for PCA Repaired







For every fold:

- use **black** entries to obtain $\hat{\mu}$ and $\hat{\Sigma}$
- predict white (missing) entries using grey (observed) entries and $\hat{\mu}$ and $\hat{\Sigma}$ (truncated)
- check the quality of your prediction

CV for PCA Repaired

```
CV_PCA_repaired <- function(X, Ranks=2:4, K=5){ #X assumed centered
   \leq nrow(X)
 N
   \leq - ncol(X)
 p
Ind <- matrix(sample(1:N),nrow=K)</pre>
Err <- array(0,c(K,length(Ranks)))</pre>
for(k in 1:K){
  Xact <- X[-Ind[k,],]</pre>
  Xout <- X[Ind[k.].]
  for(r in 1:length(Ranks)){
     C_hat <- sample_cov(Xact)
     EIG <- eigen(C_hat)
     C_hat <- EIG$vectors[,1:Ranks[r]] %*% diag(EIG$values[1:Ranks[r]]) %*% t(EIG$vectors[,1:Ranks[r]])
     X_hat <- array(0,dim(Xout))
    for(m in 1:dim(Xout)[1]){
       ind <- sample(1:p,floor(p/2)) #partition into observed and missing parts
       Sigma22 <- C hat[ind,ind]
       Sigma12 <- C_hat[-ind,ind]
       X_hat[m,-ind] <- Sigma12 %*% ginv(Sigma22) %*% Xout[m,ind]
       X hat[m,ind] <- Xout[m,ind]
     Err[k,r] <- sum((Xout-X_hat)^2)</pre>
   }
return(colSums(Err))
```

Improvements?

- Grey entries provide information on μ and Σ , shouldn't we use it?
- Isn't it awkward to first split rows and then columns? Why not just split the bivariate index set?

To cope with this, we need to know how to do MLE with missing data

Section 2

Expectation-Maximization (EM) Algorithm

Iterative algorithm for calculating Maximum-Likelihood-Estimators (MLEs) in situations, where

- there is **missing data** complicating the calculations (Example 1 and 3 below) or
- it is beneficial to think of our data as if there were some components missing/latent (Example 2 below)
 - when knowing that missing components would render the problem simple

We will assume that solving MLE with the complete data is simple

 EM will allow us to act as if we knew everything – even when we don't or when we cannot use all the information

Notations

- \mathbf{X}_{obs} are the **observed** random variables
- $\bullet~\mathbf{X}_{miss}$ are the **missing** random variables
- $\ell_{comp}(\theta)$ is the complete log-likelihood of $\mathbf{X}=(\mathbf{X}_{obs},\mathbf{X}_{miss})$
 - maximizing this to obtain MLE is supposed to be simple
 - θ denotes all the parameters, e.g., contains μ and Σ
- $\ell_{obs}(\theta)$ is the $\mathbf{observed}$ log-likelihood of \mathbf{X}_{obs}

We know that

$$\begin{split} \ell_{comp}(\theta) &= \ell(\theta \mid \mathbf{X}_{obs}, \mathbf{X}_{miss}) = \ln\{f(\mathbf{X} \mid \theta)\} = \ln\{f(\mathbf{X}_{obs}, \mathbf{X}_{miss}, M \mid \theta, \phi)\} \\ &= \ln\{f(\mathbf{X}_{obs} \mid \theta)\} + \ln\{f(\mathbf{X}_{miss} \mid \mathbf{X}_{obs}, \theta)\} \\ &= \ell_{obs}(\theta) + \ln\{f(\mathbf{X}_{miss} \mid \mathbf{X}_{obs}, \theta)\} \end{split}$$

$$\text{Then, } \ell_{obs}(\theta) = \ell_{comp}(\theta) - \ln\{f(\mathbf{X}_{miss} \mid \mathbf{X}_{obs}, \theta)\}$$

Our task is to maximize $\ell_{obs}(\theta)$

Linda Mhalla

Week 6: The EM-Algorithm

Algorithm

Although $\ell_{comp}(\theta)$ is easy to compute, we only observe \mathbf{X}_{obs} and not \mathbf{X}

 \Rightarrow Let's take on both sides the expectation given the observed data and with respect to the probability measure of X given by a fixed $\tilde{\theta}$

Algorithm

Although $\ell_{comp}(\theta)$ is easy to compute, we only observe \mathbf{X}_{obs} and not \mathbf{X} \Rightarrow Let's take on both sides the expectation given the observed data and with respect to the probability measure of \mathbf{X} given by a fixed $\tilde{\theta}$

EM Algorithm: Start from an initial estimate $\hat{\theta}^{(0)}$ and for l = 1, 2, ... iterate the following two steps until convergence:

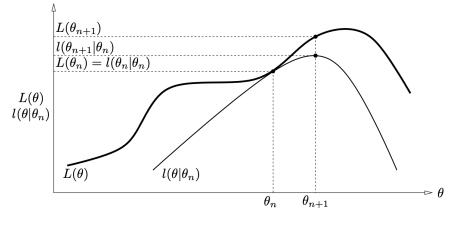
• E-step: calculate $\mathbb{E}_{\hat{\theta}^{(l-1)}}[\ell_{comp}(\theta) | \mathbf{X}_{obs} = \mathbf{x}_{obs}] =: Q(\theta, \hat{\theta}^{(l-1)})$ • M-step: optimize $\underset{\theta}{\operatorname{arg\,max}} Q(\theta, \hat{\theta}^{(l-1)}) =: \hat{\theta}^{(l)}$

Theorem (Monotone convergence property)

If $\ln\{f(\mathbf{X} \mid \theta)\}$ as well as $\ln\{f(\mathbf{X} \mid \mathbf{X}_{obs}, \theta)\}$ have finite θ' -conditional expectation given \mathbf{X}_{obs} then

$$Q(\theta,\theta') > Q(\theta',\theta') \quad \Rightarrow \quad \ell_{obs}(\theta) > \ell_{obs}(\theta')$$

Graphical interpretation



$$\bullet \ Q(\theta,\theta_n) - H(\theta_n,\theta_n) = \ell(\theta \mid \theta_n) \leq \ell_{obs}(\theta) = L(\theta)$$

Suppose you want to estimate the mean waiting time at an EPFL food truck:

- \bullet observed waiting times $\mathbf{x}_{obs} = (x_{obs}^1, \dots, x_{obs}^{N_{obs}})^\top$ for \mathbf{X}_{obs}
- food truck closes when N_{miss} individuals are still queuing, such that $\mathbf{X}_{miss} = (X_{miss}^1, \dots, X_{miss}^{N_{miss}})^\top$ are not observed but only a vector of right-censored waiting times $\tilde{\mathbf{x}}_{miss}$ with $\forall n: X_{miss}^{(n)} > \tilde{x}_{miss}^{(n)}$ • overall $N = N_{obs} + N_{miss}$ individuals considered (known)

 \Rightarrow Apply EM-algorithm assuming waiting times are i.i.d. and follow an exponential distribution with density $f(x)=\lambda\exp(-\lambda x)$

Ex.1: Censored Observations – E-step

• E-step: calculate $\mathbb{E}_{\hat{\lambda}^{(l-1)}}[\ell_{comp}(\lambda) | \mathbf{X}_{obs} = \mathbf{x}_{obs}, \forall n : X_{miss}^{(n)} > \tilde{x}_{miss}^{(n)}] =: Q(\lambda, \hat{\lambda}^{(l-1)})$

For iterations $l = 1, 2, \ldots$

$$\begin{split} Q(\lambda, \hat{\lambda}^{(l-1)}) &= \mathbb{E}_{\hat{\lambda}^{(l-1)}} \big[\ell_{comp}(\lambda) \mid \mathbf{x}_{obs}, \tilde{\mathbf{x}}_{miss} \big] \\ &= \mathbb{E}_{\hat{\lambda}^{(l-1)}} \big[\underbrace{N \log(\lambda) - \lambda \sum_{n=1}^{N_{obs}} X_{obs}^{(n)} - \lambda \sum_{n=1}^{N_{miss}} X_{miss}^{(n)} \mid \mathbf{x}_{obs}, \tilde{\mathbf{x}}_{miss} \big] \\ &= \underbrace{N \log(\lambda) - \lambda \sum_{n=1}^{N_{obs}} f(X_{obs}^{(n)}) \cdot \prod_{n=1}^{N_{miss}} f(X_{miss}^{(n)}) \}}_{\substack{X \sim Exp(\hat{\lambda}^{(l-1)}) [X_{miss}^{(n)} \mid \tilde{\mathbf{x}}_{miss}] \\ = N \log(\lambda) - \lambda \left(\sum_{n=1}^{N_{obs}} x_{obs}^{(n)} - \lambda \sum_{n=1}^{N_{miss}} \frac{\mathbb{E}_{\hat{\lambda}^{(l-1)}} [X_{miss}^{(n)} \mid \tilde{\mathbf{x}}_{miss}]}{\sum_{\substack{X \sim Exp(\hat{\lambda}^{(l-1)}) \\ *memoryless^*} 1/\hat{\lambda}^{(l-1)} + \tilde{x}_{miss}^{(n)}} \right) \\ &= N \log(\lambda) - \lambda \left(N_{obs} \bar{x}_{obs} + N_{miss} \frac{1}{\hat{\lambda}^{(l-1)}} + N_{miss} \tilde{x}_{miss} \right) \end{split}$$

Week 6: The EM-Algorithm

Ex.1: Censored observations – M-step

• M-step: optimize
$$\underset{\lambda}{\operatorname{arg\,max}} \ Q(\lambda, \hat{\lambda}^{(l-1)})$$

$$Q(\lambda, \hat{\lambda}^{(l-1)}) = N \log(\lambda) - \lambda \big(N_{obs} \bar{x}_{obs} + \frac{N_{miss}}{\hat{\lambda}^{(l-1)}} + N_{miss} \bar{\tilde{x}}_{miss} \big)$$

$$\Rightarrow \quad \frac{\partial Q}{\partial \lambda}(\lambda, \hat{\lambda}^{(l-1)}) = \frac{N}{\lambda} - (N_{obs}\bar{x}_{obs} + N_{miss}\frac{1}{\hat{\lambda}^{(l-1)}} + N_{miss}\bar{\tilde{x}}_{miss}) \stackrel{!}{=} 0$$

$$\Rightarrow \quad \hat{\lambda}^{(l)} = \frac{N}{N_{obs}\bar{x}_{obs} + \frac{N_{miss}}{\hat{\lambda}^{(l-1)}} + N_{miss}\bar{\tilde{x}}_{miss}}$$

We can compute the stationary point $\hat{\lambda}^{(l)}=\hat{\lambda}^{(l-1)}=\hat{\lambda}$

$$\hat{\lambda} = \frac{N_{obs}}{N_{obs}\bar{x}_{obs} + N_{miss}\bar{\tilde{x}}_{miss}}$$

which could also be obtained by maximizing the ML function with censored data!

Linda Mhalla

Week 6: The EM-Algorithm

2024-10-18 14 / 27

Ex.2: Mixture distributions

One of the most popular applications of the EM-algorithm:

Estimating mixture distributions for modelling multimodality or clustering/classification (soft or hard)

Mixture of two Gaussian distributions:

Let $X^{(1)},\ldots,X^{(N)}$ be i.i.d. random variables each with pdf

$$f_{\theta}(x) = (1-\tau) \ \varphi_{\mu_1,\sigma_1}\left(x\right) + \tau \ \varphi_{\mu_2,\sigma_2}\left(x\right)$$

where $\boldsymbol{\theta} = (\tau, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)^{\top}$, with

- $\varphi_{\mu,\sigma}$ is the pdf of a Gaussian with mean μ and standard deviation σ , • μ_1, μ_2 and σ_1^2, σ_2^2 are the means and variances of the mixture components, and
- $\tau \in (0,1)$ is the mixing proportion

 $\mathbf{Note:}\xspace$ case of mixture of m Gaussians is easily generalizable, though M-step is trickier

Linda Mhalla

Ex.2: Mixture distributions – factorization via latent variables

Log-likelihood has no nice form:

$$\ell_{obs}(\theta) = \sum_{n=1}^{N} \log \left\{ \left(1-\tau\right) \varphi_{\mu_{1},\sigma_{1}}\left(X^{(n)}\right) + \tau \, \varphi_{\mu_{2},\sigma_{2}}\left(X^{(n)}\right) \right\}$$

 $\begin{array}{l} \text{Trick: add latent i.i.d. indicators } Z^{(n)} \sim Bernoulli(\tau) \text{ such that} \\ X^{(n)} \mid Z^{(n)} = 0 \sim N(\mu_1, \sigma_1^2) \text{ and } X^{(n)} \mid Z^{(n)} = 1 \sim N(\mu_2, \sigma_2^2) \end{array}$

Given $Z^{(n)}=z^{(n)}\text{, }n=1,\ldots,N\text{,}$ the joint likelihood can be written as

$$L_{comp}(\theta) = (1-\tau)^{N_1} \tau^{N_2} \prod_{n=1}^{N} \varphi_{\mu_1,\sigma_1} \left\{ X^{(n)} \right\}^{(1-Z^{(n)})} \varphi_{\mu_2,\sigma_2} \left\{ X^{(n)} \right\}^{Z^{(n)}}$$

with $N_2 = \sum_{n=1}^N Z^{(n)}$ and $N_1 = N - N_2$

Ex.2: Mixture distributions – E-step – Part I

• E-step: calculate
$$\mathbb{E}_{\hat{\theta}^{(l-1)}}[\ell_{comp}(\theta) | \mathbf{X} = \mathbf{x}] =: Q(\theta, \hat{\theta}^{(l-1)})$$

$$\begin{split} \ell_{comp}(\theta) &= \ln L_{comp}(\theta) = N_1 \ln(1-\tau) + N_2 \ln(\tau) + \\ &+ \sum_{n=1}^{N} (1-Z^{(n)}) \ln \varphi_{\mu_1,\sigma_1} \left(X^{(n)} \right) + \sum_{n=1}^{N} Z^{(n)} \ln \varphi_{\mu_2,\sigma_2} \left(X^{(n)} \right) \end{split}$$

such that, we obtain

$$\begin{split} \mathbb{E}_{\hat{\theta}^{(l-1)}} \big[\ell_{comp}(\theta) \big| \mathbf{X} = \mathbf{x} \big] &= \log(1-\tau) (N - \sum_{n=1}^{N} p_n^{(l-1)}) + \log(\tau) \sum_{n=1}^{N} p_n^{(l-1)} + \\ &+ \sum_{n=1}^{N} (1 - p_n^{(l-1)}) \log \varphi_{\mu_1,\sigma_1} \left(x^{(n)} \right) + \sum_{n=1}^{N} p_n^{(l-1)} \log \varphi_{\mu_2,\sigma_2} \left(x^{(n)} \right) \\ &\mapsto (l-1) = \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathbf{x}}(p_1) \right] \mathbb{E}_{\mathbf{x}}(p_1) = (p_1) \sum_{n=1}^{N} \frac{Bayes}{\varphi_{\hat{\mu}_n}^{(l-1)}} \frac{\varphi_{\mu_1,\sigma_1}}{\varphi_n^{(l-1)}} \left(x^{(n)} \right) \hat{\tau}^{(l-1)} \end{split}$$

with $p_n^{(l-1)} = \mathbb{E}_{\hat{\theta}^{(l-1)}}[Z^{(n)}|X^{(n)} = x^{(n)}]$ $f_{\hat{\boldsymbol{\boldsymbol{\mu}}}^{(l-1)}}(\boldsymbol{x}^{(n)})$ Linda Mhalla 2024-10-18

.

Ex.2: Mixture distributions - M-step

• M-step: optimize
$$\underset{\theta}{\operatorname{arg\,max}} Q(\theta, \hat{\theta}^{(l-1)})$$

Hence, $Q(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{(l-1)})$ nicely splits into three parts

$$\begin{split} Q(\theta, \hat{\theta}^{(l-1)}) &= \\ \mathbf{A}: \quad \log(1-\tau)(N - \sum_{n=1}^{N} p_n^{(l-1)}) + \log(\tau) \sum_{n=1}^{N} p_n^{(l-1)} + \\ \mathbf{B}: \quad \sum_{n=1}^{N} (1 - p_n^{(l-1)}) \log \varphi_{\mu_1, \sigma_1} \left\{ x^{(n)} \right\} + \\ \mathbf{C}: \quad \sum_{n=1}^{N} p_n^{(l-1)} \log \varphi_{\mu_2, \sigma_2} \left\{ x^{(n)} \right\} \end{split}$$

which can be optimized separately, where A has the form of a binomial and B and C of (weighted) Gaussian log-likelihood \Rightarrow optimize accordingly

Linda Mhalla

Week 6: The EM-Algorithm

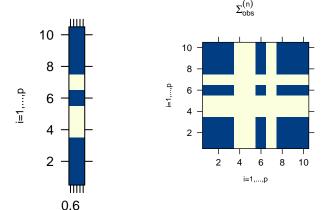
2024-10-18

Let $\mathbf{X}^{(1)},\ldots,\mathbf{X}^{(N)}$ be i.i.d. $p\text{-variate normally distributed with mean }\mu$ and covariance Σ

For each n, only a realization $\mathbf{x}_{obs}^{(n)}$ of $\mathbf{X}_{obs}^{(n)}$, subvector of $\mathbf{X}^{(n)}$, is observed The goal is to estimate μ and Σ from the incomplete observations

Ex.3: Multivariate Gaussian with Missing Entries

Let $\mu_{obs}^{(n)}$ and $\Sigma_{obs}^{(n)}$ denote the mean and covariance of $\mathbf{X}_{obs}^{(n)}$, i.e., $\mu_{obs}^{(n)}$ is just a sub-vector of μ and $\Sigma_{obs}^{(n)}$ is a sub-matrix of Σ



Ex.3: Multivariate Gaussian with Missing Entries

Recall the density $f(\mathbf{x})$ of a p-variate Gaussian:

$$f(\mathbf{x}^{(n)}) \propto \det(\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(n)} - \boldsymbol{\mu})\right\},\$$

Hence, log-likelihoods are given by

$$\begin{split} \ell_{obs}(\mu, \Sigma) &= \text{const} - \frac{1}{2} \sum_{n=1}^{N} \log \det(\Sigma_{obs}^{(n)}) - \\ &- \sum_{n=1}^{N} \frac{1}{2} (\mathbf{x}_{obs}^{(n)} - \mu_{obs}^{(n)})^{\top} (\Sigma_{obs}^{(n)})^{-1} (\mathbf{x}_{obs}^{(n)} - \mu_{obs}^{(n)}) \\ \ell_{comp}(\mu, \Sigma) &= \text{const} - \frac{N}{2} \text{ln} \det(\Sigma) - \sum_{n=1}^{N} \frac{1}{2} \underbrace{\left(\mathbf{x}^{(n)} - \mu\right)^{\top} \Sigma^{-1} (\mathbf{x}^{(n)} - \mu)}_{\text{tr} \left\{ \left(\mathbf{x}^{(n)} - \mu\right) \left(\mathbf{x}^{(n)} - \mu\right)^{\top} \Sigma^{-1} \right\}} \end{split}$$

Optimizing ℓ_{comp} is easier than optimizing $\ell_{obs} \Rightarrow \mathsf{EM}\text{-}\mathsf{Algorithm}$

Linda Mhalla

Week 6: The EM-Algorithm

Ex.3: Multivariate Gaussian with Missing Entries – E-step

• E-step: calculate
$$\mathbb{E}_{\hat{\theta}^{(l-1)}} \{ \ell_{comp}(\theta) | \forall n : \mathbf{X}_{obs}^{(n)} = \mathbf{x}_{obs}^{(n)} \} =: Q(\theta, \hat{\theta}^{(l-1)})$$
 with $\theta = (\mu, \Sigma)^{\top}$

$$\begin{split} Q(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{(l-1)}) &= \operatorname{const} \, - \frac{N}{2} \mathrm{ln} \, \det(\boldsymbol{\Sigma}) \\ &- \sum_{n=1}^{N} \frac{1}{2} \mathrm{tr} \Big[\underbrace{\mathbb{E}_{\boldsymbol{\theta}^{(l-1)}} \Big\{ (\mathbf{X}^{(n)} - \boldsymbol{\mu}) (\mathbf{X}^{(n)} - \boldsymbol{\mu})^{\top} \Big| \forall n : \mathbf{X}_{obs}^{(n)} = \mathbf{x}_{obs}^{(n)} \Big\}}_{\text{some calculations}_{(\hat{\mathbf{x}}^{(n)(l-1)} - \boldsymbol{\mu})(\hat{\mathbf{x}}^{(n)(l-1)} - \boldsymbol{\mu})^{\top} + \mathbf{C}^{(n)}} \end{split} \\ \text{with } \hat{\mathbf{x}}^{(n)(l-1)} &= \mathbb{E}_{\hat{\boldsymbol{\theta}}^{(l-1)}} \big(\mathbf{X}^{(n)} \big| \forall n : \mathbf{X}_{obs}^{(n)} = \mathbf{x}_{obs}^{(n)} \big) \text{ and} \\ \mathbf{C}^{(n)} &= \Big\{ \operatorname{Cov}_{\hat{\boldsymbol{\theta}}^{(l-1)}} \Big(X_{i}^{(n)}, X_{j}^{(n)} \mid \forall n : \mathbf{X}_{obs}^{(n)} = \mathbf{x}_{obs}^{(n)} \Big) \Big\}_{i,j} \end{split}$$

(1 1)

Ex.3: Multivariate Gaussian with Missing Entries - M-step

• M-step: optimize
$$rgmax_{ heta} Q(heta, {\hat{ heta}}^{(l-1)})$$

$$\begin{split} Q(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}^{(l-1)}) &= \operatorname{const} \, - \frac{N}{2} \mathrm{log} \det(\boldsymbol{\Sigma}) - \\ &- \sum_{n=1}^{N} \frac{1}{2} \mathrm{tr} \Big[\Big\{ (\hat{\mathbf{x}}^{(n)(l-1)} - \boldsymbol{\mu}) (\hat{\mathbf{x}}^{(n)(l-1)} - \boldsymbol{\mu})^{\top} + \mathbf{C}^{(n)} \Big\} \boldsymbol{\Sigma}^{-1} \Big] \end{split}$$

has a similar form as a multivariate normal and estimators can be derived accordingly, resulting in

$$\hat{\boldsymbol{\mu}}^{(l)} = N^{-1} \sum_{n=1}^{N} \hat{\mathbf{x}}^{(n)(l-1)}$$

and

$$\widehat{\boldsymbol{\Sigma}}^{(l)} = \frac{1}{N} \sum_{n=1}^{N} \big\{ (\widehat{\mathbf{x}}^{(n)(l-1)} - \widehat{\boldsymbol{\mu}}^{(l)}) (\widehat{\mathbf{x}}^{(n)(l-1)} - \widehat{\boldsymbol{\mu}}^{(l)})^{\top} + \mathbf{C}^{(n)} \big\}$$

Linda Mhalla

Week 6: The EM-Algorithm

Recap

Example 1:

- part of data missing but their censored versions carry some information
- the likelihood is linear (w.r.t. observations) and thus the **E-step** coincides with imputation (missing data replaced by their expectations)
 - this is rare! It works when the log-likelihood is linear in the missing data

Example 2:

- there is no true missing data here, but it is beneficial to imagine it
- $\bullet\,$ the likelihood is linear w.r.t. the imagined observations $\Rightarrow\,$ simplification

Example 3:

- likelihood of observed data easy to formulate, yet hard to optimize directly
- no linearity in log-likelihood ⇒ no imputation, more effort to compute expected likelihood (though still relatively simple, since exponential family)

Linda Mhalla

- Dempster, A. P., N. M. Laird & D. B. Rubin. (1977) "Maximum likelihood from incomplete data via the EM algorithm." *Journal of the Royal Statistical Society: Series B (Methodological)* 39.1: 1-22
 - one of the most cited papers in statistics of all times
- Little, R. J., & Rubin, D. B. (2019). *Statistical analysis with missing data*. 3rd Edition
- McLachlan, G. J. & Krishnan, T. (2008) *The EM Algorithm and Extensions*. 2nd Edition

Exercise: Multinomial distribution

Go to Exercise 3 for details.

Go to Assignment 5 for details.