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Section 1

Motivation From Last Week
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CV for PCA Repaired

Assume that data x1, … , x𝑛 ∈ ℝ𝑝 are i.i.d. realizations of 𝑋 ∼ 𝒩(𝜇, Σ)
split data into 𝐾 folds: 𝐽1, … , 𝐽𝐾
for 𝑘 = 1, … , 𝐾

estimate 𝜇 and Σ empirically using all but the 𝑘-th fold 𝐽𝑘, and
truncate Σ to be rank-𝑟
for 𝑛 ∈ 𝐽𝑘

split x𝑛 into a “missing” part x𝑚𝑖𝑠𝑠 that will be used for validation
and an “observed” part x𝑜𝑏𝑠

predict x𝑚𝑖𝑠𝑠
𝑛 from x𝑜𝑏𝑠

𝑛 as discussed on the previous slide
end for
calculate 𝐸𝑟𝑟𝑘(𝑟) = ∑𝑛∈𝐽𝑘

‖(x𝑜𝑏𝑠
𝑛 , x𝑚𝑖𝑠𝑠

𝑛 )⊤ − (x𝑜𝑏𝑠
𝑛 , x̂𝑚𝑖𝑠𝑠

𝑛 )⊤‖2
2

end for
choose ̂𝑟 = arg min

𝑟
∑𝐾

𝑘=1 |𝐽𝑘|−1𝐸𝑟𝑟𝑘(𝑟)
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CV for PCA Repaired

Dimensions: 10 x 20
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For every fold:

use black entries to obtain ̂𝜇 and Σ̂
predict white (missing) entries using grey (observed) entries and ̂𝜇
and Σ̂ (truncated)
check the quality of your prediction
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CV for PCA Repaired

CV_PCA_repaired <- function(X, Ranks=2:4, K=5){ #X assumed centered
N <- nrow(X)
p <- ncol(X)
Ind <- matrix(sample(1:N),nrow=K)
Err <- array(0,c(K,length(Ranks)))
for(k in 1:K){

Xact <- X[-Ind[k,],]
Xout <- X[Ind[k,],]
for(r in 1:length(Ranks)){
C_hat <- sample_cov(Xact)
EIG <- eigen(C_hat)
C_hat <- EIG$vectors[,1:Ranks[r]] %*% diag(EIG$values[1:Ranks[r]]) %*% t(EIG$vectors[,1:Ranks[r]])
X_hat <- array(0,dim(Xout))
for(m in 1:dim(Xout)[1]){
ind <- sample(1:p,floor(p/2)) #partition into observed and missing parts
Sigma22 <- C_hat[ind,ind]
Sigma12 <- C_hat[-ind,ind]
X_hat[m,-ind] <- Sigma12 %*% ginv(Sigma22) %*% Xout[m,ind]
X_hat[m,ind] <- Xout[m,ind]

}
Err[k,r] <- sum((Xout-X_hat)^2)

}
}
return(colSums(Err))

}
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Improvements?

Grey entries provide information on 𝜇 and Σ, shouldn’t we use it?
Isn’t it awkward to first split rows and then columns? Why not just
split the bivariate index set?

1st fold

n=1,...,N

i=
1,

...
,p

2

4

6

8

10

5 10 15 20

5th fold

n=1,...,N

i=
1,

...
,p

2

4

6

8

10

5 10 15 20

To cope with this, we need to know how to do MLE with missing data

Linda Mhalla Week 6: The EM-Algorithm 2024-10-18 6 / 27



Section 2

Expectation-Maximization (EM) Algorithm
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EM Algorithm

Iterative algorithm for calculating Maximum-Likelihood-Estimators (MLEs)
in situations, where

there is missing data complicating the calculations (Example 1 and 3
below) or
it is beneficial to think of our data as if there were some components
missing/latent (Example 2 below)

when knowing that missing components would render the problem
simple

We will assume that solving MLE with the complete data is simple

EM will allow us to act as if we knew everything – even when we don’t or
when we cannot use all the information
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Notations
X𝑜𝑏𝑠 are the observed random variables
X𝑚𝑖𝑠𝑠 are the missing random variables
ℓ𝑐𝑜𝑚𝑝(𝜃) is the complete log-likelihood of X = (X𝑜𝑏𝑠, X𝑚𝑖𝑠𝑠)

maximizing this to obtain MLE is supposed to be simple
𝜃 denotes all the parameters, e.g., contains 𝜇 and Σ

ℓ𝑜𝑏𝑠(𝜃) is the observed log-likelihood of X𝑜𝑏𝑠

We know that

ℓ𝑐𝑜𝑚𝑝(𝜃) = ℓ(𝜃 ∣ X𝑜𝑏𝑠, X𝑚𝑖𝑠𝑠) = ln{𝑓(X ∣ 𝜃)}= ln{𝑓(X𝑜𝑏𝑠, X𝑚𝑖𝑠𝑠, 𝑀 ∣ 𝜃, 𝜙)}
= ln{𝑓(X𝑜𝑏𝑠 ∣ 𝜃)} + ln{𝑓(X𝑚𝑖𝑠𝑠 ∣ X𝑜𝑏𝑠, 𝜃)}
= ℓ𝑜𝑏𝑠(𝜃) + ln{𝑓(X𝑚𝑖𝑠𝑠 ∣ X𝑜𝑏𝑠, 𝜃)}

Then, ℓ𝑜𝑏𝑠(𝜃) = ℓ𝑐𝑜𝑚𝑝(𝜃) − ln{𝑓(X𝑚𝑖𝑠𝑠 ∣ X𝑜𝑏𝑠, 𝜃)}

Our task is to maximize ℓ𝑜𝑏𝑠(𝜃)
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Algorithm
Although ℓ𝑐𝑜𝑚𝑝(𝜃) is easy to compute, we only observe X𝑜𝑏𝑠 and not X

⇒ Let’s take on both sides the expectation given the observed data and
with respect to the probability measure of X given by a fixed ̃𝜃

EM Algorithm: Start from an initial estimate ̂𝜃(0) and for 𝑙 = 1, 2, …
iterate the following two steps until convergence:

E-step: calculate 𝔼 ̂𝜃(𝑙−1)[ℓ𝑐𝑜𝑚𝑝(𝜃)∣X𝑜𝑏𝑠 = x𝑜𝑏𝑠] =∶ 𝑄(𝜃, ̂𝜃(𝑙−1))
M-step: optimize arg max

𝜃
𝑄(𝜃, ̂𝜃(𝑙−1)) =∶ ̂𝜃(𝑙)

Theorem (Monotone convergence property)
If ln{𝑓(X ∣ 𝜃)} as well as ln{𝑓(X ∣ X𝑜𝑏𝑠, 𝜃)} have finite 𝜃′-conditional
expectation given X𝑜𝑏𝑠 then

𝑄(𝜃, 𝜃′) > 𝑄(𝜃′, 𝜃′) ⇒ ℓ𝑜𝑏𝑠(𝜃) > ℓ𝑜𝑏𝑠(𝜃′)
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Graphical interpretation

𝑄(𝜃, 𝜃𝑛) − 𝐻(𝜃𝑛, 𝜃𝑛) = ℓ(𝜃 ∣ 𝜃𝑛) ≤ ℓ𝑜𝑏𝑠(𝜃) = 𝐿(𝜃)
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Ex.1: Censored Observations

Suppose you want to estimate the mean waiting time at an EPFL food
truck:

observed waiting times x𝑜𝑏𝑠 = (𝑥1
𝑜𝑏𝑠, … , 𝑥𝑁𝑜𝑏𝑠

𝑜𝑏𝑠 )⊤ for X𝑜𝑏𝑠
food truck closes when 𝑁𝑚𝑖𝑠𝑠 individuals are still queuing, such that
X𝑚𝑖𝑠𝑠 = (𝑋1

𝑚𝑖𝑠𝑠, … , 𝑋𝑁𝑚𝑖𝑠𝑠
𝑚𝑖𝑠𝑠 )⊤ are not observed but only a vector of

right-censored waiting times x̃𝑚𝑖𝑠𝑠 with ∀𝑛 ∶ 𝑋(𝑛)
𝑚𝑖𝑠𝑠 > ̃𝑥(𝑛)

𝑚𝑖𝑠𝑠
overall 𝑁 = 𝑁𝑜𝑏𝑠 + 𝑁𝑚𝑖𝑠𝑠 individuals considered (known)

⇒ Apply EM-algorithm assuming waiting times are i.i.d. and follow an
exponential distribution with density 𝑓(𝑥) = 𝜆 exp(−𝜆𝑥)
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Ex.1: Censored Observations – E-step
E-step: calculate
𝔼𝜆̂(𝑙−1)[ℓ𝑐𝑜𝑚𝑝(𝜆)∣X𝑜𝑏𝑠 = x𝑜𝑏𝑠, ∀𝑛 ∶ 𝑋(𝑛)

𝑚𝑖𝑠𝑠 > ̃𝑥(𝑛)
𝑚𝑖𝑠𝑠] =∶ 𝑄(𝜆, 𝜆̂(𝑙−1))

For iterations 𝑙 = 1, 2, …

𝑄(𝜆, 𝜆̂(𝑙−1)) = 𝔼𝜆̂(𝑙−1)[ℓ𝑐𝑜𝑚𝑝(𝜆) ∣ x𝑜𝑏𝑠, x̃𝑚𝑖𝑠𝑠]

= 𝔼𝜆̂(𝑙−1)[ 𝑁 log(𝜆) − 𝜆
𝑁𝑜𝑏𝑠

∑
𝑛=1

𝑋(𝑛)
𝑜𝑏𝑠 − 𝜆

𝑁𝑚𝑖𝑠𝑠

∑
𝑛=1

𝑋(𝑛)
𝑚𝑖𝑠𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
log{∏𝑁𝑜𝑏𝑠

𝑛=1 𝑓(𝑋(𝑛)
𝑜𝑏𝑠)⋅∏𝑁𝑚𝑖𝑠𝑠

𝑛=1 𝑓(𝑋(𝑛)
𝑚𝑖𝑠𝑠)}

∣ x𝑜𝑏𝑠, x̃𝑚𝑖𝑠𝑠]

= 𝑁 log(𝜆) − 𝜆
𝑁𝑜𝑏𝑠

∑
𝑛=1

𝑥(𝑛)
𝑜𝑏𝑠 − 𝜆

𝑁𝑚𝑖𝑠𝑠

∑
𝑛=1

𝔼𝜆̂(𝑙−1)[𝑋(𝑛)
𝑚𝑖𝑠𝑠 ∣ x̃𝑚𝑖𝑠𝑠]⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑋∼𝐸𝑥𝑝(𝜆̂(𝑙−1))=
"𝑚𝑒𝑚𝑜𝑟𝑦𝑙𝑒𝑠𝑠"

1/𝜆̂(𝑙−1)+𝑥̃(𝑛)
𝑚𝑖𝑠𝑠

= 𝑁 log(𝜆) − 𝜆(𝑁𝑜𝑏𝑠 ̄𝑥𝑜𝑏𝑠 + 𝑁𝑚𝑖𝑠𝑠
1

𝜆̂(𝑙−1)
+ 𝑁𝑚𝑖𝑠𝑠 ̄ ̃𝑥𝑚𝑖𝑠𝑠)
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Ex.1: Censored observations – M-step

M-step: optimize arg max
𝜆

𝑄(𝜆, 𝜆̂(𝑙−1))

𝑄(𝜆, 𝜆̂(𝑙−1)) = 𝑁 log(𝜆) − 𝜆(𝑁𝑜𝑏𝑠 ̄𝑥𝑜𝑏𝑠 + 𝑁𝑚𝑖𝑠𝑠
𝜆̂(𝑙−1)

+ 𝑁𝑚𝑖𝑠𝑠 ̄ ̃𝑥𝑚𝑖𝑠𝑠)

⇒ 𝜕𝑄
𝜕𝜆 (𝜆, 𝜆̂(𝑙−1)) = 𝑁

𝜆 − (𝑁𝑜𝑏𝑠 ̄𝑥𝑜𝑏𝑠 + 𝑁𝑚𝑖𝑠𝑠
1

𝜆̂(𝑙−1)
+ 𝑁𝑚𝑖𝑠𝑠 ̄ ̃𝑥𝑚𝑖𝑠𝑠) != 0

⇒ 𝜆̂(𝑙) = 𝑁
𝑁𝑜𝑏𝑠 ̄𝑥𝑜𝑏𝑠 + 𝑁𝑚𝑖𝑠𝑠

𝜆̂(𝑙−1) + 𝑁𝑚𝑖𝑠𝑠 ̄ ̃𝑥𝑚𝑖𝑠𝑠

We can compute the stationary point 𝜆̂(𝑙) = 𝜆̂(𝑙−1) = 𝜆̂

𝜆̂ = 𝑁𝑜𝑏𝑠
𝑁𝑜𝑏𝑠 ̄𝑥𝑜𝑏𝑠 + 𝑁𝑚𝑖𝑠𝑠 ̄ ̃𝑥𝑚𝑖𝑠𝑠

which could also be obtained by maximizing the ML function with censored data!
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Ex.2: Mixture distributions
One of the most popular applications of the EM-algorithm:

Estimating mixture distributions for modelling multimodality or
clustering/classification (soft or hard)

Mixture of two Gaussian distributions:

Let 𝑋(1), … , 𝑋(𝑁) be i.i.d. random variables each with pdf

𝑓𝜃(𝑥) = (1 − 𝜏) 𝜑𝜇1,𝜎1
(𝑥) + 𝜏 𝜑𝜇2,𝜎2

(𝑥)
where 𝜃 = (𝜏, 𝜇1, 𝜇2, 𝜎2

1, 𝜎2
2)⊤, with

𝜑𝜇,𝜎 is the pdf of a Gaussian with mean 𝜇 and standard deviation 𝜎,
𝜇1, 𝜇2 and 𝜎2

1, 𝜎2
2 are the means and variances of the mixture

components, and
𝜏 ∈ (0, 1) is the mixing proportion

Note: case of mixture of 𝑚 Gaussians is easily generalizable, though
M-step is trickier
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Ex.2: Mixture distributions – factorization via latent
variables

Log-likelihood has no nice form:

ℓ𝑜𝑏𝑠(𝜃) =
𝑁

∑
𝑛=1

log {(1 − 𝜏) 𝜑𝜇1,𝜎1
(𝑋(𝑛)) +𝜏 𝜑𝜇2,𝜎2

(𝑋(𝑛))}

Trick: add latent i.i.d. indicators 𝑍(𝑛) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜏) such that
𝑋(𝑛) ∣ 𝑍(𝑛) = 0 ∼ 𝑁(𝜇1, 𝜎2

1) and 𝑋(𝑛) ∣ 𝑍(𝑛) = 1 ∼ 𝑁(𝜇2, 𝜎2
2)

Given 𝑍(𝑛) = 𝑧(𝑛), 𝑛 = 1, … , 𝑁 , the joint likelihood can be written as

𝐿𝑐𝑜𝑚𝑝(𝜃) = (1 − 𝜏)𝑁1𝜏𝑁2
𝑁

∏
𝑛=1

𝜑𝜇1,𝜎1
{𝑋(𝑛)}(1−𝑍(𝑛)) 𝜑𝜇2,𝜎2

{𝑋(𝑛)}𝑍(𝑛)

with 𝑁2 = ∑𝑁
𝑛=1 𝑍(𝑛) and 𝑁1 = 𝑁 − 𝑁2
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Ex.2: Mixture distributions – E-step – Part I
E-step: calculate 𝔼 ̂𝜃(𝑙−1)[ℓ𝑐𝑜𝑚𝑝(𝜃)∣X = x] =∶ 𝑄(𝜃, ̂𝜃(𝑙−1))

ℓ𝑐𝑜𝑚𝑝(𝜃) = ln 𝐿𝑐𝑜𝑚𝑝(𝜃) = 𝑁1 ln(1 − 𝜏) + 𝑁2 ln(𝜏)+

+
𝑁

∑
𝑛=1

(1 − 𝑍(𝑛)) ln 𝜑𝜇1,𝜎1
(𝑋(𝑛)) +

𝑁
∑
𝑛=1

𝑍(𝑛) ln 𝜑𝜇2,𝜎2
(𝑋(𝑛))

such that, we obtain

𝔼 ̂𝜃
(𝑙−1)[ℓ𝑐𝑜𝑚𝑝(𝜃)∣X = x] = log(1 − 𝜏)(𝑁 −

𝑁
∑
𝑛=1

𝑝(𝑙−1)
𝑛 ) + log(𝜏)

𝑁
∑
𝑛=1

𝑝(𝑙−1)
𝑛 +

+
𝑁

∑
𝑛=1

(1 − 𝑝(𝑙−1)
𝑛 ) log 𝜑𝜇1,𝜎1

(𝑥(𝑛)) +
𝑁

∑
𝑛=1

𝑝(𝑙−1)
𝑛 log 𝜑𝜇2,𝜎2

(𝑥(𝑛))

with 𝑝(𝑙−1)
𝑛 = 𝔼 ̂𝜃(𝑙−1)[𝑍(𝑛)∣𝑋(𝑛) = 𝑥(𝑛)] 𝐵𝑎𝑦𝑒𝑠=

𝜑
𝜇̂(𝑙−1)

2 ,𝜎̂(𝑙−1)
2

(𝑥(𝑛)) ̂𝜏(𝑙−1)

𝑓 ̂𝜃(𝑙−1) (𝑥(𝑛)) .
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Ex.2: Mixture distributions – M-step

M-step: optimize arg max
𝜃

𝑄(𝜃, ̂𝜃(𝑙−1))

Hence, 𝑄(𝜃, ̂𝜃
(𝑙−1)

) nicely splits into three parts

𝑄(𝜃, ̂𝜃
(𝑙−1)

) =

A ∶ log(1 − 𝜏)(𝑁 −
𝑁

∑
𝑛=1

𝑝(𝑙−1)
𝑛 ) + log(𝜏)

𝑁
∑
𝑛=1

𝑝(𝑙−1)
𝑛 +

B ∶
𝑁

∑
𝑛=1

(1 − 𝑝(𝑙−1)
𝑛 ) log 𝜑𝜇1,𝜎1

{𝑥(𝑛)} +

C ∶
𝑁

∑
𝑛=1

𝑝(𝑙−1)
𝑛 log 𝜑𝜇2,𝜎2

{𝑥(𝑛)}

which can be optimized separately, where A has the form of a binomial and B
and C of (weighted) Gaussian log-likelihood ⇒ optimize accordingly
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Ex.3: Multivariate Gaussian with Missing Entries

Let X(1), … , X(𝑁) be i.i.d. 𝑝-variate normally distributed with mean 𝜇 and
covariance Σ
For each 𝑛, only a realization x(𝑛)

𝑜𝑏𝑠 of X(𝑛)
𝑜𝑏𝑠, subvector of X(𝑛), is observed

The goal is to estimate 𝜇 and Σ from the incomplete observations
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Ex.3: Multivariate Gaussian with Missing Entries

Let 𝜇(𝑛)
𝑜𝑏𝑠 and Σ(𝑛)

𝑜𝑏𝑠 denote the mean and covariance of X(𝑛)
𝑜𝑏𝑠, i.e., 𝜇(𝑛)

𝑜𝑏𝑠 is
just a sub-vector of 𝜇 and Σ(𝑛)

𝑜𝑏𝑠 is a sub-matrix of Σ
µobs

(n)
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Ex.3: Multivariate Gaussian with Missing Entries
Recall the density 𝑓(x) of a 𝑝-variate Gaussian:

𝑓(x(𝑛)) ∝ det(Σ)− 1
2 exp {−1

2(x(𝑛) − 𝜇)⊤Σ−1(x(𝑛) − 𝜇)} ,

Hence, log-likelihoods are given by

ℓ𝑜𝑏𝑠(𝜇, Σ) = const − 1
2

𝑁
∑
𝑛=1

log det(Σ(𝑛)
𝑜𝑏𝑠)−

−
𝑁

∑
𝑛=1

1
2(x(𝑛)

𝑜𝑏𝑠 − 𝜇(𝑛)
𝑜𝑏𝑠)⊤(Σ(𝑛)

𝑜𝑏𝑠)−1(x(𝑛)
𝑜𝑏𝑠 − 𝜇(𝑛)

𝑜𝑏𝑠)

ℓ𝑐𝑜𝑚𝑝(𝜇, Σ) = const − 𝑁
2 ln det(Σ) −

𝑁
∑
𝑛=1

1
2 (x(𝑛) − 𝜇)⊤Σ−1(x(𝑛) − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

tr{(x(𝑛)−𝜇)(x(𝑛)−𝜇)⊤
Σ−1}

.

Optimizing ℓ𝑐𝑜𝑚𝑝 is easier than optimizing ℓ𝑜𝑏𝑠 ⇒ EM-Algorithm
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Ex.3: Multivariate Gaussian with Missing Entries – E-step

E-step: calculate 𝔼 ̂𝜃
(𝑙−1){ℓ𝑐𝑜𝑚𝑝(𝜃)∣∀𝑛 ∶ X(𝑛)

𝑜𝑏𝑠 = x(𝑛)
𝑜𝑏𝑠} =∶ 𝑄(𝜃, ̂𝜃

(𝑙−1)
)

with 𝜃 = (𝜇, Σ)⊤

𝑄(𝜃, ̂𝜃
(𝑙−1)

) = const − 𝑁
2 ln det(Σ)

−
𝑁

∑
𝑛=1

1
2tr[ 𝔼 ̂𝜃

(𝑙−1){(X(𝑛) − 𝜇)(X(𝑛) − 𝜇)⊤∣∀𝑛 ∶ X(𝑛)
𝑜𝑏𝑠 = x(𝑛)

𝑜𝑏𝑠}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
some calculations= (x̂(𝑛)(𝑙−1)−𝜇)(x̂(𝑛)(𝑙−1)−𝜇)⊤+C(𝑛)

Σ−1]

with x̂(𝑛)(𝑙−1) = 𝔼 ̂𝜃
(𝑙−1)(X(𝑛)∣∀𝑛 ∶ X(𝑛)

𝑜𝑏𝑠 = x(𝑛)
𝑜𝑏𝑠) and

C(𝑛) = {Cov ̂𝜃
(𝑙−1) (𝑋(𝑛)

𝑖 , 𝑋(𝑛)
𝑗 ∣ ∀𝑛 ∶ X(𝑛)

𝑜𝑏𝑠 = x(𝑛)
𝑜𝑏𝑠)}

𝑖,𝑗
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Ex.3: Multivariate Gaussian with Missing Entries – M-step

M-step: optimize arg max
𝜃

𝑄(𝜃, ̂𝜃
(𝑙−1)

)

𝑄(𝜃, ̂𝜃
(𝑙−1)

) = const − 𝑁
2 log det(Σ)−

−
𝑁

∑
𝑛=1

1
2tr[{(x̂(𝑛)(𝑙−1) − 𝜇)(x̂(𝑛)(𝑙−1) − 𝜇)⊤ + C(𝑛)}Σ−1]

has a similar form as a multivariate normal and estimators can be derived
accordingly, resulting in

𝜇̂(𝑙) = 𝑁−1
𝑁

∑
𝑛=1

x̂(𝑛)(𝑙−1)

and

Σ̂(𝑙) = 1
𝑁

𝑁
∑
𝑛=1

{(x̂(𝑛)(𝑙−1) − 𝜇̂(𝑙))(x̂(𝑛)(𝑙−1) − 𝜇̂(𝑙))⊤ + C(𝑛)}
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Recap

Example 1:

part of data missing but their censored versions carry some information
the likelihood is linear (w.r.t. observations) and thus the E-step coincides
with imputation (missing data replaced by their expectations)

this is rare! It works when the log-likelihood is linear in the missing data

Example 2:

there is no true missing data here, but it is beneficial to imagine it
the likelihood is linear w.r.t. the imagined observations ⇒ simplification

Example 3:

likelihood of observed data easy to formulate, yet hard to optimize directly
no linearity in log-likelihood ⇒ no imputation, more effort to compute
expected likelihood (though still relatively simple, since exponential family)
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Exercise: Multinomial distribution

Go to Exercise 3 for details.
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Assignment 5 [5 %]

Go to Assignment 5 for details.
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