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EM Algorithm - Recap

X𝑜𝑏𝑠 are the observed random variables
X𝑚𝑖𝑠𝑠 are the missing random variables
ℓ𝑐𝑜𝑚𝑝(𝜃) is the complete log-likelihood of X = (X𝑜𝑏𝑠, X𝑚𝑖𝑠𝑠)

maximizing this to obtain MLE is supposed to be simple
𝜃 denotes all the parameters, e.g., contains 𝜇 and Σ

Our task is to maximize ℓ𝑜𝑏𝑠(𝜃), the observed log-likelihood of X𝑜𝑏𝑠

EM Algorithm: Start from an initial estimate 𝜃(0) and for 𝑙 = 1, 2, …
iterate the following two steps until convergence:

E-step: calculate 𝔼 ̂𝜃(𝑙−1)[ℓ𝑐𝑜𝑚𝑝(𝜃)∣X𝑜𝑏𝑠 = x𝑜𝑏𝑠] =∶ 𝑄(𝜃, 𝜃(𝑙−1))
M-step: optimize arg max

𝜃
𝑄(𝜃, 𝜃(𝑙−1)) =∶ 𝜃(𝑙)

Linda Mhalla Week 7: The EM-Algorithm 2024-11-01 2 / 24



Section 1

Some Properties of EM
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Monotone Convergence

Proposition 1: ℓ𝑜𝑏𝑠(𝜃(𝑙)) ≥ ℓ𝑜𝑏𝑠(𝜃(𝑙−1))

a step of the EM algorithm will never decrease the objective value
algorithms with this property are typically

numerically stable (good)
convergent under mild conditions (good)

the algorithm is guaranteed to converge to a stationary point of the
likelihood under a continuity condition on 𝑄(⋅, ⋅); see Theorem 3.2 in
McLachlan and Krishnan, 2007

convergence to a unique MLE requires unimodality of the likelihood
(among other conditions)
prone to get stuck in local maxima (bad)
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Monotone Convergence - Proof

The joint density for the complete data X = (X𝑜𝑏𝑠, X𝑚𝑖𝑠𝑠)⊤ satisfies
𝑓𝜃(X) = 𝑓𝜃(X𝑚𝑖𝑠𝑠|X𝑜𝑏𝑠)𝑓𝜃(X𝑜𝑏𝑠) and hence

ℓ𝑐𝑜𝑚𝑝(𝜃) = log 𝑓𝜃(X𝑚𝑖𝑠𝑠|X𝑜𝑏𝑠) + ℓ𝑜𝑏𝑠(𝜃)

Notice that ℓ𝑜𝑏𝑠(𝜃) does not depend on X𝑚𝑖𝑠𝑠 and hence we can condition
on X𝑜𝑏𝑠 under any value of the parameter 𝜃 without really doing anything:

ℓ𝑜𝑏𝑠(𝜃) = 𝔼𝜃(𝑙−1){ℓ𝑐𝑜𝑚𝑝(𝜃) − log 𝑓𝜃(X𝑚𝑖𝑠𝑠|X𝑜𝑏𝑠)∣𝑋𝑜𝑏𝑠}

= 𝔼𝜃(𝑙−1){ℓ𝑐𝑜𝑚𝑝(𝜃)∣𝑋𝑜𝑏𝑠}⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑄(𝜃,𝜃(𝑙−1))

− 𝔼𝜃(𝑙−1){ log 𝑓𝜃(𝑋𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠)∣𝑋𝑜𝑏𝑠}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝐻(𝜃,𝜃(𝑙−1))

Thus, when we take ̂𝜃(𝑙) = arg max
𝜃

𝑄(𝜃, ̂𝜃(𝑙−1)), we only have to show

that we have not increased −𝐻(⋅, 𝜃(𝑙−1))
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Monotone Convergence - Proof

Dividing and multiplying by 𝑓𝜃(𝑙−1)(𝑋𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠) and using the Jensen’s
inequality, we obtain just that:

𝐻(𝜃,𝜃(𝑙−1)) = 𝔼𝜃(𝑙−1){ ln 𝑓𝜃(𝑋𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠)
𝑓𝜃(𝑙−1)(𝑋𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠) ∣𝑋𝑜𝑏𝑠} + 𝐻(𝜃(𝑙−1), 𝜃(𝑙−1))

≤ ln 𝔼𝜃(𝑙−1){ 𝑓𝜃(𝑋𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠)
𝑓𝜃(𝑙−1)(𝑋𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠) ∣𝑋𝑜𝑏𝑠}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∫ 𝑓𝜃(𝑥𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠)

𝑓𝜃(𝑙−1) (𝑥𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠) 𝑓𝜃(𝑙−1) (𝑥𝑚𝑖𝑠𝑠|𝑋𝑜𝑏𝑠)𝑑𝑥𝑚𝑖𝑠𝑠=1

+𝐻(𝜃(𝑙−1), 𝜃(𝑙−1))

and so indeed 𝐻(𝜃, 𝜃(𝑙−1)) ≤ 𝐻(𝜃(𝑙−1), 𝜃(𝑙−1))
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Speed of Convergence: Definition

We have an iterative algorithm that is trying to find the maximum/minimum of a
function and we want an estimate of how long it will take to reach that optimal
value
For an iterative algorithm that converges to a solution Θ⋆, if there is a real
number 𝛾 and a constant integer 𝑘0, such that for all 𝑘 > 𝑘0, we have

∥Θ(𝑘+1) − Θ⋆∥ ≤ 𝑞 ∥Θ(𝑘) − Θ⋆∥𝛾

with 𝑞 being a positive constant independent of 𝑘, then we say that the algorithm
has a convergence rate of order 𝛾. An algorithm has

first-order or linear convergence if 𝛾 = 1 and 𝑞 ∈ (0, 1) (sublinear if 𝑞 = 1)
superlinear convergence if 1 < 𝛾 < 2 (quasi-Newton, method of scoring)
second-order or quadratic convergence if 𝛾 = 2 (Newton)
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Speed of Convergence for EM
Consider the iteration mapping 𝑀 ∶ 𝜃(𝑙−1) ↦ 𝜃(𝑙), assumed continuous

if 𝜃(𝑙) → 𝜃⋆ as 𝑙 → ∞, then it must be a fixed point: 𝑀(𝜃⋆) = 𝜃⋆

in the neighborhood of 𝜃⋆, a 1st order Taylor expansion:

𝜃(𝑙+1) = 𝑀(𝜃(𝑙)) ≈ 𝜃⋆ + 𝜕𝑀(𝜃)
𝜕𝜃⊤ ∣

𝜃=𝜃⋆
(𝜃(𝑙) − 𝜃⋆)

yields 𝜃(𝑙+1) − 𝜃⋆ ≈ J(𝜃⋆) (𝜃(𝑙) − 𝜃⋆),
where J(𝜃⋆) is the Jacobian matrix and measures the rate of convergence
Smaller ‖J(𝜃⋆)‖ = lim ‖𝜃(𝑙+1) − 𝜃(𝑙)‖/‖𝜃(𝑙) − 𝜃(𝑙−1)‖ means faster global conv.
Rate is linear: ‖𝜃(𝑙) − 𝜃⋆‖ ≈ ‖J(𝜃⋆)‖𝑙 ‖𝜃(0) − 𝜃⋆‖
If ‖J(𝜃⋆)‖ < 1, then 𝑀 is a contraction and we may hope for convergence

It can be shown that:
J(𝜃⋆) = J−1

𝑐𝑜𝑚𝑝(𝜃⋆) J𝑚𝑖𝑠𝑠(𝜃⋆),
where J𝑐𝑜𝑚𝑝 and J𝑚𝑖𝑠𝑠 are Fisher information of the complete resp. missing data
⇒ the bigger the proportion of missing information, the slower the convergence
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Exponential Families
Let the density of the complete data be from the exponential family, i.e.,

𝑓𝑋(x) = exp {𝜂(𝜃)⊤T(x) − 𝑔(𝜃)}ℎ(x)
where

𝜃 ∈ Θ ⊂ ℝ𝑝

T(x) = (𝑇1(x), … , 𝑇𝑝(x))⊤ is the sufficient statistic for 𝜃
𝜂 ∶ ℝ𝑝 → ℝ𝑝, 𝑔 ∶ ℝ𝑝 → 𝑅 and ℎ ∶ ℝ𝑑 → ℝ

Assuming 𝜂(𝜃) = 𝜃, i.e., 𝜃 is the canonical parameter, we have

ℓ𝑐𝑜𝑚𝑝(𝜃) =
𝑁

∑
𝑛=1

𝜃⊤T(X𝑛) + ln ℎ(𝑋𝑛) − 𝑁𝑔(𝜃)

and

𝑄(𝜃, 𝜃(𝑙−1)) =
𝑁

∑
𝑛=1

𝜃⊤t(𝑙)
𝑛 + 𝔼𝜃(𝑙−1)[ ln ℎ(𝑋𝑛)∣X𝑜𝑏𝑠] − 𝑁𝑔(𝜃),

where 𝑡(𝑙)
𝑛 = 𝔼𝜃(𝑙−1)[𝑇 (X𝑛)∣X𝑜𝑏𝑠]
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Exponential Families

It is straightforward that for the E-step we will only need to compute
the conditional expectations of the complete-data sufficient statistics

𝔼𝜃(𝑙−1)[𝑇𝑖(X)∣X𝑜𝑏𝑠], 𝑖 = 1, … , 𝑝

The M-step is equivalent to finding the expressions for the
complete-data ML estimates of 𝜃 and replacing the complete-data
sufficient statistics in these expressions with their conditional
expectations computed in the E step

Note: This applies, e.g., to Example 3 from Week 6
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Section 2

MM Algorithms
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MM Algorithms

Definition: A function 𝑔(x ∣ x(𝑙)) is said to majorize a function
𝑓 ∶ ℝ𝑝 → ℝ at x(𝑙) provided

𝑓(x) ≤ 𝑔(x|x(𝑙)), ∀ x
𝑓(x(𝑙)) = 𝑔(x(𝑙)|x(𝑙))

In other words, the surface x ↦ 𝑔(x|x(𝑙)) is above the surface 𝑓(x), and it
is touching it at x(𝑙)
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MM Algorithms

Assume our goal is to minimize a function 𝑓 ∶ ℝ𝑝 → ℝ
The basic idea of the MM algorithm is to start from an initial guess x(0)

and for 𝑙 = 1, 2, … iterate between the following steps until convergence:

Majorization step: construct 𝑔(x|x(𝑙−1)), i.e., construct a majorizing
function to 𝑓 at x(𝑙−1)

Minimization step: set x(𝑙) = arg min
x

𝑔(x|x(𝑙−1)), i.e., minimize the
majorizing function

→ MM stands for “Majorization-Minimization” or
“Minorization-Maximization”
Monotone convergence property is trivially guaranteed by construction:

𝑓(x(𝑙)) ≤ 𝑔(x(𝑙)|x(𝑙−1)) ≤ 𝑔(x(𝑙−1)|x(𝑙−1)) = 𝑓(x(𝑙−1))
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E-step Minorizes
With extra minus sign, the EM is:

E-step: 𝑄(𝜃|𝜃(𝑙−1)) ∶= 𝔼𝜃(𝑙−1)[ − ℓ𝑐𝑜𝑚𝑝(𝜃)∣𝑋𝑜𝑏𝑠]
M-step: 𝜃(𝑙) ∶= arg min

𝜃
𝑄(𝜃|𝜃(𝑙−1))

From the proof of Proposition 1 above, we have (with the extra sign)

−ℓ𝑜𝑏𝑠(𝜃) = −𝑄(𝜃|𝜃(𝑙−1)) + 𝐻(𝜃, 𝜃(𝑙−1))

and since 𝐻(𝜃, 𝜃(𝑙−1)) ≤ 𝐻(𝜃(𝑙−1), 𝜃(𝑙−1)), we obtain

−ℓ𝑜𝑏𝑠(𝜃) ≤ −𝑄(𝜃|𝜃(𝑙−1)) + 𝐻(𝜃(𝑙−1), 𝜃(𝑙−1)) =∶ 𝑄(𝜃|𝜃(𝑙−1))

with equality at 𝜃 = 𝜃(𝑙−1)

𝑄(𝜃|𝜃(𝑙−1)) is majorizing −ℓ𝑜𝑏𝑠(𝜃) at 𝜃 = 𝜃(𝑙−1)

𝐻(𝜃(𝑙−1), 𝜃(𝑙−1)) is a constant (w.r.t. 𝜃)
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Graphical interpretation Revisited

ℓ(𝜃 ∣ 𝜃𝑛) = −�̃�(𝜃 ∣ 𝜃𝑛) = 𝑄(𝜃|𝜃(𝑛))−𝑄(𝜃(𝑛)|𝜃(𝑛))+ℓ𝑜𝑏𝑠(𝜃(𝑛)) ≤ ℓ𝑜𝑏𝑠(𝜃) = 𝐿(𝜃)
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Example 2 (Week 6) Revisited

rmixnorm <- function(N, tau, mu1=3, mu2=0, sigma1=0.5, sigma2=1){
ind <- I(runif(N) > tau)
X <- rep(0,N)
X[ind] <- rnorm(sum(ind), mu1, sigma1)
X[!ind] <- rnorm(sum(!ind), mu2, sigma2)
return(X)

}
dmixnorm <- function(x, tau, mu1=3, mu2=0, sigma1=0.5, sigma2=1){

y <- (1-tau)*dnorm(x,mu1,sigma1) + tau*dnorm(x,mu2,sigma2)
return(y)

}
ell_obs <- function(X, tau, mu1=3, mu2=0, sigma1=0.5, sigma2=1){

return(sum(log(dmixnorm(X, tau, mu1, mu2, sigma1, sigma2))))
}
Q <- function(t, tl){

gammas <- dnorm(X)*tl/dmixnorm(X, tl)
qs <- dnorm(X,3,0.5)^(1-gammas)*dnorm(X)^gammas*t^gammas*(1-t)^(1-gammas)
return(sum(log(qs)))

}
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Two Steps Visualized

τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0τ0 τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1τ1 τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2τ2

−350

−300

−250

−200

0.00 0.25 0.50 0.75 1.00
τ

l o
bs

(τ
)

lobs(τ) − Q
~

(τ | τ0) − Q
~

(τ | τ1)

Linda Mhalla Week 7: The EM-Algorithm 2024-11-01 17 / 24



MM example: Finding a (sample) median
Consider the sequence of observations 𝑥1, … , 𝑥𝑁 . The sample median 𝜃
minimizes the non-differentiable criterion

𝑓(𝜃) =
𝑁

∑
𝑛=1

|𝑥𝑛 − 𝜃|

The quadratic function

ℎ𝑛 (𝜃 ∣ 𝜃𝑙) = 1
2

(𝑥𝑛 − 𝜃)2

|𝑥𝑛 − 𝜃𝑙| + 1
2 ∣𝑥𝑛 − 𝜃𝑙∣

majorizes |𝑥𝑛 − 𝜃| at 𝜃𝑙 ⇒ 𝑔 (𝜃 ∣ 𝜃𝑙) = ∑𝑁
𝑛=1 ℎ𝑛 (𝜃 ∣ 𝜃𝑙) majorizes 𝑓(𝜃)

The minimum of 𝑔 (𝜃 ∣ 𝜃𝑙) occurs at 𝜃𝑙+1 = (∑𝑁
𝑛=1 𝑤𝑙

𝑛𝑥𝑛)/(∑𝑁
𝑛=1 𝑤𝑙

𝑛), for
𝑤𝑙

𝑛 = ∣𝑥𝑛 − 𝜃𝑙∣−1

→ generalizes to 𝐿1 regression and quantile regression
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MM Convergence
Theorem. (Lange, 2013, Proposition 12.4.4)
Suppose that all stationary points of 𝑓(x) are isolated and that the
differentiability, coerciveness, and convexity assumptions are true.
Then any sequence that iterates x(𝑙) = 𝑀(x(𝑙−1)), generated by the
iteration map 𝑀(⋅) of the MM algorithm, possesses a limit, and that limit
is a stationary point of 𝑓(x). If 𝑓(x) is strictly convex, then lim

𝑙→∞
x(𝑙) is the

minimum point.

differentiability - conditions on majorizations guaranteeing
differentiability of the iteration map 𝑀
coerciveness - upper level sets of 𝑓 {x ∶ 𝑓(x) ≤ 𝑓(x0)} are compact
(ensures that local maxima do not occur on the boundary)

convexity - just technical! Without it, we would say that all limit
points (which however might not exist without convexity) are
stationary points and MM converges to one of them
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MM Remarks

MM algorithms can linearize an optimization problem (mixture of
Gaussians)
MM algorithms can turn a non-differentiable problem into a smooth
problem
The rate of convergence depends on how well the majorizer/minorizer
𝑔(x ∣ x(𝑙)) approximates the target 𝑓(x)
There exist methods for accelerating the convergence of MM and EM
algorithms (e.g., Aitken’s method); see Zhou et al. (2009) and
Chapter 4 in McLachlan and Krishnan (2008)
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https://www.wiley.com/en-ca/The+EM+Algorithm+and+Extensions%2C+2nd+Edition-p-9780471201700


Concluding EM Remarks

EM is just MM with majorization achieved by Jensen’s inequality
due to the monotone convergence property of all MM algorithms, EM

is numerically stable
typically converges
but can get stuck in a local minimum/maximum

How to choose starting parameters in mixture of Gaussian?
Hastie and Tibshirani (Elements of Statistical Learning, pg. 293) recommend
constructing initial guesses as follows:

For ̂𝜇1 and ̂𝜇2, randomly select two 𝑦𝑖 values
For Σ̂2

1 and Σ̂2
2, set both equal to the overall sample variance

∑𝑁
𝑖=1 (𝑦𝑖 − ̄𝑦) (𝑦𝑖 − ̄𝑦)𝑇 /𝑁

For ̂𝜋, begin at 0.50

In practice, the EM algorithm is often run using several different combinations of
starting parameter estimates ⇒ prevents relying on one set of starting parameters
that may get stuck in a local max
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Concluding EM Remarks

EM computational costs per iteration are typically favorable (simple
steps), but
convergence relatively slow (many steps)

linear at the neighborhood of the limit
in practice monitored by looking at ‖x(𝑙) − x(𝑙−1)‖ and
|𝑓(x(𝑙)) − 𝑓(x(𝑙−1))|

the M-step may not have a closed form solution, but is typically much
simpler than the original problem

if inner iteration for the M-step, early stopping is often desirable
ex.: logistic regression with missing covariates (M-step solved by IRLS)
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Main Project

Go to Main project for details
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