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Introduction

MC ≡ repeated random sampling to mimic outcome of random process
and produce numerical results such as

generating draws from complicated distributions and/or domains
integration

calculation of moments or confidence intervals
high-dimensional densities in Bayesian settings

optimization
mode evaluation

Basic idea: If we can sample from a process or mimic its outcomes, we
can learn a lot about it by doing statistics on the simulated samples (as

opposed to analyzing the process itself)

MC methods ≡ simulation-based statistical techniques/inference
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Introduction

Gambling experiments have random outcomes – hence “Monte Carlo”

Method initially developed by Stanislaw Ulam and John von Neumann for
the Manhattan Project (to estimate integrals)
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Example

(𝑋1, 𝑌1)⊤, … , (𝑋𝑁 , 𝑌𝑁)⊤ a sample from the standardized bivariate
Gaussian distribution

𝒩 ((0
0) , (1 𝜌

𝜌 1))

We want to test 𝐻0 ∶ 𝜌 = 𝜌0 against 𝐻1 ∶ 𝜌 ≠ 𝜌0

Statistic: ̂𝜌𝑁 = 𝑁−1 ∑𝑁
𝑛=1 𝑋𝑛𝑌𝑛

Since the data generation process is fully determined under 𝐻0, we can
simulate data to approximate the sampling distribution and thus also the
𝑝-value

To test a hypothesis, we only need to simulate data under 𝐻0

But how to draw samples from a specific distribution?
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Example: Estimation of 𝜋

Pr(point inside the circle) = area of the circle
area of the square = 𝜋𝑟2

2𝑟 × 2𝑟 = 𝜋
4

piVal <- function(nPoints = 300){
x <- runif(nPoints,-1,1)
y <- runif(nPoints,-1,1)
result <- ifelse(x^2+y^2 <= 1, TRUE, FALSE)
4*sum(result)/nPoints

}

N <- 1000
pi_est <- replicate(N, piVal())
mean(pi_est) #to get uncertainty

[1] 3.141707
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Section 1

Random Number Generation (RNG)
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RNG
True randomness is hard to come by. Historically:

dice, cards, coins
physical processes
census data, tables, etc.

Practical reasons not to use ”truly” random numbers:
debugging and reproducibility

John von Neumann: pseudo-RNG

approximates the desired dist. for 𝑁 → ∞
cannot be predicted
pass a set of independence tests
repeatability (⇒ reproducibility)
long cycle (before it starts repeating) and fast sampling

Uniformity and independence tests needed to assess quality of pseudo-RNG
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Cornerstone: Generating from 𝒰[0, 1]

Assume now we can generate numbers from the 𝒰[0, 1] distribution

e.g., the linear congruential method (LCG)

𝑋𝑛 = (𝑎𝑋𝑛−1 + 𝑐) mod 𝑚, 𝑛 = 1, 2, … ,

where 𝑎, 𝑐, 𝑚, and 𝑋0 are cleverly chosen to fulfill the pseudo-RNG
requirements, i.e., maximize period, speed, and “randomness”

𝑋0 is the seed
produces integers between 0 and 𝑚 − 1
𝑈𝑛 = 𝑋𝑛/𝑚 ⋅∼ 𝑈(0, 1)

Bad example: 𝑚 = 231, 𝑎 = 216 + 3, and 𝑐 = 0 ⇒ IBM’s RANDU

Example: 𝑎 = 13, 𝑐 = 0, and 𝑚 = 64
𝑋0 = 4: 4, 52, 36, 20, 4
𝑋0 = 2: 2, 26, 18, 42, 34, 58, 50, 10, 2
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LCG
Choice of parameters

For 𝑚 = 2𝑏, and 𝑐 ≠ 0
longest possible period 𝑃 = 𝑚 = 2𝑏 is achieved if 𝑐 is relative prime to
𝑚 and 𝑎 = 1 + 4𝑘, where 𝑘 is an integer

For 2, 𝑚 = 2𝑏, and 𝑐 = 0
longest possible period 𝑃 = 𝑚/4 = 2𝑏−2 is achieved if the seed 𝑋0 is
odd and 𝑎 = 3 + 8𝑘 or 𝑎 = 5 + 8𝑘, for 𝑘 = 0, 1, …

For 𝑚 a prime and 𝑐 = 0
longest possible period 𝑃 = 𝑚 − 1 is achieved if the multiplier 𝑎 has
property that smallest integer 𝑘 such that 𝑎𝑘 − 1 is divisible by 𝑚 is
𝑘 = m − 1

Now, better and much more complicated algorithms are available

every piece of software has its favorite pseudo-RNG
outside the scope of the course (see, e.g., shift-register generators or
Wichmann–Hill generator)

Question: How do we generate from other distributions?
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Transforms

Lemma. (Inverse Transform.)
Let 𝑈 ∼ 𝒰(0, 1) and 𝐹 be a distribution function and 𝐹 −1 the quantile
(or generalized inverse) function. Then 𝑋 = 𝐹 −1(𝑈) ∼ 𝐹 .

Proof: Simply
𝑃(𝑋 ≤ 𝑥) = 𝑃 {𝐹(𝑋) ≤ 𝐹(𝑥)} = 𝑃{𝑈 ≤ 𝐹(𝑥)} = 𝐹(𝑥).
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Transforms

The inverse transform method is general, but not almighty:

distribution/quantile functions can be complicated/unknown
e.g., 𝒩(0, 1)

Often, simpler relationships can be used: diagram

still, there is no arrow there between 𝒰(0, 1) and 𝒩(0, 1), generating
𝒩(0, 1) is actually a bit tricky…
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Transforms

Lemma. (Box-Muler transform.)
Let 𝑈1, 𝑈2 ∼ 𝒰(0, 1) be independent. Then

𝑍1 = √−2 log(𝑈1) cos(2𝜋𝑈2) & 𝑍2 = √−2 log(𝑈1) sin(2𝜋𝑈2)

are two independent standard Gaussian random variables

Explanation: points from the 𝒩(0, 𝐼2), when written in polar coordinates,
have an angle 𝜃 ∼ 𝑈[0, 2𝜋) which is independent of the radius 𝑅
Again, software uses its favorite relationships

e.g., R has tabulated 𝐹 and 𝐹 −1 for 𝒩(0, 1) to a high precision and
actually uses the inverse transform, because evaluating trigonometric
functions is rather expensive (slow)
?rnorm ⇒ rnorm, pnorm, qnorm, dnorm help
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Rejection Sampling
Setup: we know how to simulate from a proposal 𝑔, we want to simulate from a
target 𝑓

let 𝑠𝑢𝑝𝑝(𝑓) ⊂ 𝑠𝑢𝑝𝑝(𝑔), i.e., 𝑓(𝑥) > 0 ⇒ 𝑔(𝑥) > 0
let there be 𝑐 > 1 such that ∀𝑥 ∶ 𝑓(𝑥) ≤ 𝑐 𝑔(𝑥), i.e., sup

𝑥
𝑓(𝑥)
𝑔(𝑥) = 𝑐 < ∞

Algorithm: (to draw a single sample 𝑋 from 𝑓)

1 Draw a proposal 𝑌 from 𝑔
2 Draw 𝑈 ∼ 𝒰(0, 1)
3 If 𝑈 ≤ 1

𝑐
𝑓(𝑌 )
𝑔(𝑌 ) , accept 𝑋 = 𝑌 and stop, otherwise go back to 1

Example:
𝒰(0, 1) proposal
ℬ(2, 5) target
𝑐 ≈ 2.5 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5
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Rejection Sampling
Does the algorithm really sample from 𝑓?

𝑃(𝑋 ≤ 𝑥) = 𝑃{𝑌 ≤ 𝑥 ∣ 𝑈 ≤ 1
𝑐

𝑓(𝑌 )
𝑔(𝑌 )⏟

=∶𝑡(𝑌 )

} = 𝑃{𝑌 ≤ 𝑥 ∧ 𝑈 ≤ 𝑡(𝑌 )}
𝑃{𝑈 ≤ 𝑡(𝑌 )}

=
∫𝑥
−∞ ∫𝑡(𝑦)

0 𝑑𝑢 𝑔(𝑦)𝑑𝑦
∫+∞
−∞ ∫𝑡(𝑦)

0 𝑑𝑢 𝑔(𝑦)𝑑𝑦
=

∫𝑥
−∞ 𝑡(𝑦)𝑔(𝑦)𝑑𝑦

∫+∞
−∞ 𝑡(𝑦)𝑔(𝑦)𝑑𝑦

=
∫𝑥
−∞

1
𝑐 𝑓(𝑦)𝑑𝑦

∫+∞
−∞

1
𝑐 𝑓(𝑦)𝑑𝑦

=
1
𝑐 𝐹(𝑥)

1
𝑐

= 𝐹(𝑥)

The rejection sampling algorithm above is again quite general, but it needs

a good proposal 𝑔
as close as possible to the target density (small values of 𝑐), leading to
high acceptance probability 𝑃 {𝑈 ≤ 𝑡(𝑌 )} = 1/𝑐

fast evaluation of 𝑓 and 𝑔
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Example: 𝒩(0, 1) again
Goal: Simulate data from the standard Gaussian target using the double
exponential (Laplace) proposal, i.e.,

𝑓(𝑥) = 1√
2𝜋𝑒− 𝑥2

2 & 𝑔(𝑥) = 𝛼
2 𝑒−𝛼|𝑥|, where 𝛼 > 0, 𝑥 ∈ ℝ

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Target and scaled proposal densities

Another way of obtaining
𝒩(0, 1) from 𝒰(0, 1):

𝒰(0, 1) ⟶ 𝐸𝑥𝑝(1)
𝐸𝑥𝑝(1) ⟶ 𝐷𝑏𝐸𝑥𝑝(1)

𝐷𝑏𝐸𝑥𝑝(1) ⟶ 𝑁(0, 1)

Note: 𝛼 = 1 minimizes the value of 𝑐 = sup 𝑓(𝑥)/𝑔(𝑥) and hence
maximizes the acceptance probability
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Section 2

Numerical Integration
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Deterministic Quadrature Approaches

Goal: approximate 𝐽 = ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 via composite quadrature rules

Quadrature method: evaluate the function on a grid

𝑆𝐾 = {(𝑏 − 𝑎)/𝐾}
𝐾

∑
𝑘=1

𝑓(𝑡𝑘)

if 𝑓 is nice (smooth), 𝑆𝐾 → 𝐽 for 𝐾 → ∞
corresponds to integrating a local constant interpolation of 𝑓
local linear interpolation (trapezoidal rule) or local quadratic
(Simpson’s rule) are also well known
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Naive Monte Carlo
We consider the more general integral

𝐽 = ∫
𝒳

𝑚(𝑥)𝑓(𝑥)𝑑𝑥 = 𝔼𝑓{𝑚(𝑋)} for 𝑋 ∼ 𝑓

⇒ generate 𝑋1, … , 𝑋𝑁
𝑖.𝑖.𝑑.∼ 𝑓 and approximate 𝐽 by

̂̄𝐽𝑁 = 𝑁−1
𝑁

∑
𝑛=1

𝑚(𝑋𝑛)

Provided ∫ |𝑚(𝑥)|𝑓(𝑥)𝑑𝑥 < ∞, unbiased and consistent due to SLLN
monitoring convergence via CLT-based confidence intervals:

√
𝑁

̂̄𝐽𝑁 − 𝐽
𝜎(𝑚)

⋅∼ 𝒩(0, 1), where 𝜎2(𝑚) = ∫ 𝑚2(𝑥)𝑓(𝑥)𝑑𝑥 − 𝐽2

(Naive Monte Carlo estimate 𝑣2
𝑁 of 𝜎2(𝑚) is used in practice)

⇒ MC integration methods give a probabilistic error bound versus a deterministic
one with numerical quadrature rules
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Naive Monte Carlo

lim
𝑁→∞

Pr (−3𝜎(𝑚)√
𝑁

≤ 1
𝑁

𝑁
∑
𝑛=1

𝑚 (𝑋𝑛) − 𝐽 ≤ 3𝜎(𝑚)√
𝑁

) ≈ 99.73%

⇒ to attain an error of 𝜖 > 0 with 99.73%, we need

𝑁 = 9
𝜖2 𝜎2(𝑚) = 𝑂(1/𝜖2)

This is independent of the dimension (depends on the smoothness of 𝑚
though)!
Deterministic numerical integration methods suffer the curse of
dimensionality: 𝑁 = 𝑂(1/𝜖𝑑), roughly
Monte Carlo estimate for the integral converges slowly to the true value
(slower than quadrature methods for smooth functions in low dimensions)

Beware of rare events: if 𝑓 has heavy tails, ̂̄𝐽𝑁 can be a bad estimate and
we need huge 𝑁 to get small 𝑣𝑁 ⇒ techniques for variance reduction
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Importance Sampling
We often can not simulate directly from 𝑓 and we require sophisticated
approaches. Rewrite

𝐽 ∶= ∫
𝒳

𝑚(𝑥)𝑓(𝑥)𝑑𝑥 = ∫
𝒳

𝑚(𝑥)𝑓(𝑥)
𝑔(𝑥) 𝑔(𝑥)𝑑𝑥 = ∫

𝒳
𝑚(𝑥)𝑤(𝑥)𝑔(𝑥)𝑑𝑥

with 𝑔 a density whose support contains that of 𝑓 and 𝑤(𝑥) ≥ 0 the
importance weighting function

Thus, by sampling 𝑋1, … , 𝑋𝑁
i.i.d.∼ 𝑔, we can approximate 𝐽 by

𝐽𝑁 ∶= 𝑁−1
𝑁

∑
𝑛=1

𝑚(𝑋𝑛)𝑤(𝑋𝑛)

Idea:

Use a simpler proposal distribution 𝑔 from which we can generate
Candidates generated from 𝑔 fall within the domain of 𝑓
Reweight the observations generated from it when taking the mean
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Importance Sampling: Intuitive Explanation
Key: integrating 𝑓 amounts to integrating 𝑓/𝑔 under sampling from 𝑔

𝐽 = ∫
𝒳

𝑚(𝑥)𝑓(𝑥)𝑑𝑥 = 𝔼𝑔{𝑚(𝑋)𝑤(𝑋)}

when 𝑓 is flat (all regions are equally important), use either the naive
MC (with uniform sample) or deterministic approaches that need only
small samples
when 𝑓 is not flat, using a “good” 𝑔 allows us to encode which regions
are important ⇒ “importance sampling” (vs rejection sampling)

Of course, it is not always easy to find a “good” 𝑔 which

has a similar shape than 𝑓 and
from which we can easily sample

As we will see, when 𝒳 = ℝ, it is important to match the decay of the
tails between the target and reference measures

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08 21 / 33



Importance Sampling: Properties
unbiased and the variance is given by

var(𝐽𝑁) = 1
𝑁 { ∫

𝒳
𝑚2(𝑥)𝑓(𝑥)

𝑔(𝑥) 𝑓(𝑥)𝑑𝑥 − 𝐽2}

= 𝑁−1 ∫
𝒳

{𝑚(𝑥)𝑓(𝑥)
𝑔(𝑥) − 𝐽}𝑚(𝑥)𝑓(𝑥)𝑑𝑥,

which is small if 𝑔(𝑥) ≈ 𝑚(𝑥)𝑓(𝑥)𝐽−1 or 𝑔(𝑥) ∝ 𝑚(𝑥)𝑓(𝑥)
⇒ good choices of 𝑔 can yield huge improvements in efficiency, e.g.,

𝑔 with similar shape than 𝑚𝑓
maximum principle (𝑔(𝑥) and 𝑚(𝑥)𝑓(𝑥) take their maximum at the
same value)
𝑔 from the same distribution family as 𝑓

For instance, reduction in variance is

var( ̂̄𝐽𝑁) − var(𝐽𝑁) = 1
𝑁 ∫

𝒳
𝑚2(𝑥){1 − 𝑓(𝑥)

𝑔(𝑥) }𝑓(𝑥)𝑑𝑥
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Importance Sampling: Properties

Most difficult aspect to importance sampling is in choosing a good
sampling density 𝑔
Need to be very careful as it is possible to choose 𝑔 according to
some heuristics, but that results in a variance increase

It is possible to have an importance sampling estimator with infinite
variance

e.g., if 𝑔 puts too little weight relative to 𝑓 on the tails of the
distribution
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Examples

Task: Approximately calculate 𝑃 (2 < 𝑋 < 6) for the target distribution
𝑋 ∼ 𝑓 using a reference 𝑔
Gaussian target, Exponential reference - densities (left), their ratio
(middle), importance sampling error (right)
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log[10](N)

Ĵ N
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Examples

Approximately calculate 𝑃(2 < 𝑋 < 6) for the target distribution 𝑋 ∼ 𝑓
using a reference 𝑔
Cauchy target, Exponential reference - densities (left), their ratio (middle),
importance sampling error (right)
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Ĵ N

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08 25 / 33



Examples

Approximately calculate 𝑃(2 < 𝑋 < 6) for the target distribution 𝑋 ∼ 𝑓
using a reference 𝑔
Cauchy target, Gaussian reference - densities (left), their ratio (middle),
importance sampling error (right)
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the tails of Cauchy and Gaussian distributions are too different ⇒
importance sampling performs poorly
if we can simulate from Gaussian, we can simulate directly from
Cauchy: 𝑍1, 𝑍2 ∼ 𝒩(0, 1) independent ⇒ 𝑍1/𝑍2 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)
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Variance Reduction

Accuracy of MC integration is assessed by the estimator’s
efficiency/variance (assuming efforts of simulation are similar)

There are ways to tweak the sampling scheme in order to reduce the
variance

importance sampling (we have seen above)

antithetic variables (to follow)

stratified sampling (to follow)

quasi-random sampling and control variates (see the supplementary
notes)

many other techniques: latin hypercube sampling, ratio estimator, etc

Remark: When comparing several different estimators via simulations, the
same simulated datasets should be used for all the estimators
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Variance Reduction: Antithetic Variables
Idea: Introduce negative correlation between pairs of replications and rely on

var(𝑓1 + 𝑓2) = var(𝑓1) + var(𝑓2) + 2cov(𝑓1, 𝑓2)

Given two i.i.d. samples 𝑋1, … , 𝑋𝑁 ∼ 𝑓 and 𝑌1, … , 𝑌𝑁 ∼ 𝑓 , consider the
estimator

̃𝐽𝑁 = 1
2𝑁

𝑁
∑
𝑛=1

{𝑚(𝑋𝑛) + 𝑚(𝑌𝑛)} = 1
2( ̂̄𝐽

𝑋
𝑁 + ̂̄𝐽

𝑌
𝑁)

Then,
var( ̃𝐽𝑁) = 1

2var( ̂̄𝐽𝑁){1 + corr( ̂J̄
X
N, ̂J̄

Y
N)}

⇒ ̃𝐽𝑁 is more efficient than the naive MC (with sample of size 2𝑁) if 𝑚(𝑋𝑛)
and 𝑚(𝑌𝑛) are negatively correlated

Basic result: if 𝑔(𝑢) is monotonic on 0 < 𝑢 < 1, then
corr{𝑔(𝑈), 𝑔(1 − 𝑈)} < 0

Thus 𝐹 −1(𝑈) and 𝐹 −1(1 − 𝑈) are negatively correlated with distribution 𝐹
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Variance Reduction: Stratified Sampling

Break sampling space into strata and sample appropriate number of
observations in each
Compute the naive MC estimator in each stratum and sum over all
strata

We want to estimate 𝐽 = 𝔼{𝑚(𝑋)}. Let 𝑊 be another r.v. s.t.

𝑝𝑖 = Pr(𝑊 ∈ Δ𝑖), with Δ𝑖 ⊂ ℝ, is easily computed
we know how to generate 𝑋 ∣ 𝑊 ∈ Δ𝑖

Assuming Δ1, … , Δ𝑚 is a partition of ℝ and denoting
𝐽𝑗 = 𝔼{𝑚(𝑋) ∣ 𝑊 ∈ Δ𝑗} and 𝜎2

𝑗 = var{𝑚(𝑋) ∣ 𝑊 ∈ Δ𝑗}, we have

𝐽 = 𝔼[𝔼{𝑚(𝑋) ∣ 𝑊}] =
𝑚

∑
𝑗=1

𝑝𝑗𝐽𝑗, and 𝐽𝑠𝑡𝑟,𝑁 =
𝑚

∑
𝑗=1

𝑝𝑗
̂̄𝐽 𝑗,𝑁𝑗
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Variance Reduction: Stratified Sampling

Method relies on conditional variance:

var{𝑚(𝑋)} = 𝔼[var{𝑚(𝑋)|𝐼}] + var[𝔼{𝑚(𝑋) ∣ 𝐼}]

Thus,

var{𝑚(𝑋)} ≥ 𝔼[var{𝑚(𝑋)|𝐼}] =
𝑚

∑
𝑗=1

𝑝𝑗𝜎2
𝑗

For instance, assuming proportional allocation, i.e., 𝑁𝑗 = 𝑁𝑝𝑗, then

var(𝐽𝑠𝑡𝑟,𝑁) = ∑𝑝
𝑗=1 𝑝2

𝑗
𝜎2

𝑗
𝑁𝑗

=
∑𝑚

𝑗=1 𝑝𝑗𝜎2
𝑗

𝑁 ≤ var( ̂̄𝐽𝑁)

Variance reduction substantial if 𝐼 accounts for a large fraction of the
variance of 𝑚(𝑋)
Variance reduction depends on the allocation in each stratum. Thus,
we can minimize var(𝐽𝑠𝑡𝑟,𝑁) subject to ∑𝑚

𝑗=1 𝑁𝑗 = 𝑁
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Feedback for the mini-project

Good points
original datasets
going the extra mile to dig deeper in the data like creating new
variables
nice introductions and good referencing

Points to improve
be careful when interpreting results (do not jump on conclusions), e.g.,
correlation coefficients, latent confounders
remember to log-transform when needed …
captions missing!!!
code appearing in the text
bad sectioning of the text (or no sectioning!)
bad citations or missing references
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Assignment [5 %]

Go to Assignment 6 for details.
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