Week 8: Monte Carlo (MC)

MATH-517 Statistical Computation and Visualization

Linda Mhalla

2024-11-08

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08

1/33



Introduction

MC = repeated random sampling to mimic outcome of random process
and produce numerical results such as

@ generating draws from complicated distributions and/or domains
@ integration

o calculation of moments or confidence intervals

e high-dimensional densities in Bayesian settings
@ optimization

e mode evaluation

Basic idea: If we can sample from a process or mimic its outcomes, we
can learn a lot about it by doing statistics on the simulated samples (as
opposed to analyzing the process itself)

MC methods = simulation-based statistical techniques/inference

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08 2/33



Introduction

Gambling experiments have random outcomes — hence “Monte Carlo”

Method initially developed by Stanislaw Ulam and John von Neumann for
the Manhattan Project (to estimate integrals)
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Example

(X1, Y)", ..., (X, Yn) " asample from the standardized bivariate

Gaussian distribution
0 1 p
()6 9)

e We want to test Hj, : p = p, against H; : p # p,
o Statistic: jy = N"' S0 XV,

Since the data generation process is fully determined under H,, we can

simulate data to approximate the sampling distribution and thus also the
p-value

To test a hypothesis, we only need to simulate data under H, J

But how to draw samples from a specific distribution?
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Example: Estimation of 7

area of the circle r?

Pr(point inside the circle) =

e~

area of the square  2r x 2r

piVal <- function(nPoints = 300){
x <- runif (nPoints,-1,1)
y <- runif (nPoints,-1,1)
result <- ifelse(x"2+y~2 <= 1, TRUE, FALSE)
4xsum(result)/nPoints

}
N <- 1000
pi_est <- replicate(N, piVal())

mean(pi_est) #to get uncertainty

[1] 3.141707
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Section 1




RNG

True randomness is hard to come by. Historically:

Practical reasons not to use "truly” random numbers:
debugging and reproducibility

John von Neumann: pseudo-RNG

dice, cards, coins
physical processes

census data, tables, etc.

approximates the desired dist. for N — oo

cannot be predicted

pass a set of independence tests
repeatability (= reproducibility)

long cycle (before it starts repeating) and fast sampling

Uniformity and independence tests needed to assess quality of pseudo-RNG
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Cornerstone: Generating from /[0, 1]

Assume now we can generate numbers from the /[0, 1] distribution

@ e.g., the linear congruential method (LCG)

X, =(aX,_{+c)modm, n=12 ...,

n

where a, c,m, and X, are cleverly chosen to fulfill the pseudo-RNG

requirements, i.e., maximize period, speed, and “randomness”
o X is the seed

e produces integers between 0 and m — 1
o U,=X,/m~U(0,1)

Bad example: m = 231 4 =21643 and ¢ =0 = IBM's RANDU
Example: a =13, ¢ =0, and m = 64

o X, =4:4, 52 36, 20, 4
o X, =2:2, 26,18, 42, 34, 58, 50, 10, 2
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LCG

Choice of parameters

@ Form = 20, and ¢ #0
o longest possible period P = m = 2 is achieved if ¢ is relative prime to
m and a = 1 + 4k, where k is an integer
@ For2,m=2 and c=0
o longest possible period P = m /4 = 22 is achieved if the seed X, is
odd anda =348k ora =5+ 8k, for k=0,1, ...
@ For m a prime and c =0

o longest possible period P = m — 1 is achieved if the multiplier a has
property that smallest integer k such that a* — 1 is divisible by m is
k=m-—1

Now, better and much more complicated algorithms are available

@ every piece of software has its favorite pseudo-RNG
@ outside the scope of the course (see, e.g., shift-register generators or
Wichmann—Hill generator)
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Transforms

Lemma. (/nverse Transform.)
Let U ~ U(0,1) and F be a distribution function and F~! the quantile
(or generalized inverse) function. Then X = F~Y(U) ~ F.

Proof: Simply
P(X<z)=P{F(X)<F(z)} =P{U < F(x)} = F(x).

1

uniform @ - - m e »

deviate in F = i pdy

1
1
1
1
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U
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transformed
deviate out
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Transforms

The inverse transform method is general, but not almighty:

e distribution/quantile functions can be complicated /unknown
e eg., N(0,1)

Often, simpler relationships can be used: diagram

o still, there is no arrow there between 2/(0,1) and N(0, 1), generating
N(0,1) is actually a bit tricky..
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http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

Transforms

Lemma. (Box-Muler transform.)
Let U;, U, ~ U(0,1) be independent. Then

Z, = /—2log(U;) cos(2nU,) & Zy = v/—2log(U,) sin(2nU,)

are two independent standard Gaussian random variables

Explanation: points from the N'(0, I,), when written in polar coordinates,
have an angle 6 ~ U[0, 27) which is independent of the radius R

Again, software uses its favorite relationships

@ e.g., R has tabulated ' and F'~! for (0, 1) to a high precision and
actually uses the inverse transform, because evaluating trigonometric
functions is rather expensive (slow)

@ 7rnorm = rnorm, pnorm, gnorm, dnorm help
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Rejection Sampling

Setup: we know how to simulate from a proposal g, we want to simulate from a

target f

o let supp(f) C supp(g), ie., f(z) >0=g(z) >0
@ let there be ¢ > 1 such that Vz : f(z) < cg(x), i.e., sup% =c< 00

Algorithm: (to draw a single sample X from f)

© Draw a proposal Y from ¢
@ Draw U ~ U(0,1)

Q@ IfU<L %% accept X =Y and stop, otherwise go back to 1

Example:

@ (0,1) proposal
@ B(2,5) target

00 05 1.0 15 20 25

@ c~ 25 00 02 04 06 08 10
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Rejection Sampling
Does the algorithm really sample from f?

g L) | PY <z AU<HY)}
Tegly) [ P{U < t(Y)}

P(Xg:v):P{Ygx

—y)

L 5 du gly)dy _ S twewdy 7 f(w)dy
[ Y dugydy [ twew)dy [ Lf(y)dy

_ Flx)

= 1 = F(x)

c
The rejection sampling algorithm above is again quite general, but it needs

@ a good proposal g
e as close as possible to the target density (small values of ¢), leading to
o high acceptance probability P{U < t(Y)} =1/c

o fast evaluation of f and ¢
Linda Mhalla
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Example: NV (0,1) again
Goal: Simulate data from the standard Gaussian target using the double

exponential (Laplace) proposal, i.e.,

1 =
flx) = 6—72 & gx) = %e‘o“w‘, where . >0, z €R

Target and scaled proposal densities

Another way of obtaining
N(0,1) from U(0,1):

U0,1) — Exp(1)
Exp(1) — DbExp(1)
DbExp(1) — N(0,1)

00 01 02 03 04 05 06
. . . . . . .

4 2 0 2 4
Note: o = 1 minimizes the value of ¢ = sup f(z)/g(z) and hence
maximizes the acceptance probability
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Deterministic Quadrature Approaches

b
Goal: approximate J = L f(z)dx via composite quadrature rules

Quadrature method: evaluate the function on a grid
K

Sk =1{b—a)/K}) f(ty)
k=1

e if f is nice (smooth), Sy — J for K — oo

@ corresponds to integrating a local constant interpolation of f

o local linear interpolation (trapezoidal rule) or local quadratic
(Simpson'’s rule) are also well known
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Naive Monte Carlo

We consider the more general integral

/m z)dr =E{m(X)} for X~ f
= generate Xq,..., Xy g f and approximate J by
_ N
Jy=N1Y"m(X
n=1

@ Provided [ |m(z)|f(z)dz < oo, unbiased and consistent due to SLLN
@ monitoring convergence via CLT-based confidence intervals:

In—4J .
VN ~ N(0,1), where o2 /m r)dx — J?

o(m)
(Naive Monte Carlo estimate v%; of 0?(m) is used in practice)
= MC integration methods give a probabilistic error bound versus a deterministic

one with numerical quadrature rules
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Naive Monte Carlo

N—oo

lim Pr (—3”(m) < XN:m(X )—J<3U(m)> ~ 99.73%
< . <3< .

= to attain an error of € > 0 wit

>

99.73%, we need

N = 6%02(771) = 0(1/€%)

@ This is independent of the dimension (depends on the smoothness of m
though)!

@ Deterministic numerical integration methods suffer the curse of
dimensionality: N = O(1/e?), roughly

@ Monte Carlo estimate for the integral converges slowly to the true value
(slower than quadrature methods for smooth functions in low dimensions)

@ Beware of rare events: if f has heavy tails, jN can be a bad estimate and
we need huge NN to get small vy, = techniques for variance reduction
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Importance Sampling

We often can not simulate directly from f and we require sophisticated
approaches. Rewrite

P — M r)axr = mix)wlx x)ax
J.—/xm(a:)f(x)dac—/xm@)g(m)g( )d /x (z)w(z)g(x)d

with g a density whose support contains that of f and w(x) > 0 the
importance weighting function

i.i.d

Thus, by sampling X;,..., Xy '~ ¢, we can approximate J by

Idea:

@ Use a simpler proposal distribution g from which we can generate
o Candidates generated from g fall within the domain of f

@ Reweight the observations generated from it when taking the mean
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Importance Sampling: Intuitive Explanation

Key: integrating f amounts to integrating f/g under sampling from g

/m 2)dz = E, {m(X)w(X)}

e when f is flat (all regions are equally important), use either the naive
MC (with uniform sample) or deterministic approaches that need only
small samples

@ when f is not flat, using a “good” g allows us to encode which regions
are important = “importance sampling” (vs rejection sampling)

Of course, it is not always easy to find a “good” g which

@ has a similar shape than f and
@ from which we can easily sample

As we will see, when ' = R, it is important to match the decay of the
tails between the target and reference measures
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Importance Sampling: Properties

@ unbiased and the variance is given by

Ty = 5 [0l S a2}

_ N / { f(f“ J}m(x)f(m)dx,

which is small if g(z) ~ (x)f(ac)z]* or g( ) x m(x) f(x)
= good choices of g can yield huge improvements in efficiency, e.g.,

@ g with similar shape than mf

e maximum principle (g(x) and m(z)f(z) take their maximum at the
same value)

@ g from the same distribution family as f

For instance, reduction in variance is

V&I‘(jN> —var(Jy) = ]i[/xm2(x){1 — M}f(ac)dx

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08 22/33



Importance Sampling: Properties

@ Most difficult aspect to importance sampling is in choosing a good
sampling density ¢

@ Need to be very careful as it is possible to choose g according to
some heuristics, but that results in a variance increase

@ |t is possible to have an importance sampling estimator with infinite
variance

e e.g., if g puts too little weight relative to f on the tails of the
distribution

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08 23/33



Examples

Task: Approximately calculate P(2 < X < 6) for the target distribution

X ~ f using a reference g

Gaussian target, Exponential reference - densities (left), their ratio

(middle), importance sampling error (right)
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Examples

Approximately calculate P(2 < X < 6) for the target distribution X ~ f
using a reference g

Cauchy target, Exponential reference - densities (left), their ratio (middle),
importance sampling error (right)
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Examples

Approximately calculate P(2 < X < 6) for the target distribution X ~ f

using a reference g

Cauchy target, Gaussian reference - densities (left), their ratio (middle),
importance sampling error (right)
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@ the tails of Cauchy and Gaussian distributions are too different =
importance sampling performs poorly

@ if we can simulate from Gaussian, we can simulate directly from

Cauchy: Z,,Z, ~ N(0,1) independent = Z,/Z, ~ Cauchy(0,1)

Linda Mhalla

Week 8: Monte Carlo (MC)

2024-11-08

26 /33



Variance Reduction

Accuracy of MC integration is assessed by the estimator’s
efficiency/variance (assuming efforts of simulation are similar)

There are ways to tweak the sampling scheme in order to reduce the
variance

@ importance sampling (we have seen above)
@ antithetic variables (to follow)
e stratified sampling (to follow)

@ quasi-random sampling and control variates (see the supplementary
notes)

@ many other techniques: latin hypercube sampling, ratio estimator, etc

Remark: When comparing several different estimators via simulations, the
same simulated datasets should be used for all the estimators
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Variance Reduction: Antithetic Variables

Idea: Introduce negative correlation between pairs of replications and rely on

var(fy + fy) = var(fy) + var(fy) + 2cov(fy, f5)

Given two i.i.d. samples X, ..., Xy ~ f and Y;,..., Yy ~ f, consider the
estimator
X Y

- 1 X 1 = ~
Ty === {m(X,)+m(Y,)} ==(Jy +Jy)
2N 2
Then,

~

1 = ~XAY
var(Jy) = ivar(JN){l + corr(Jy, Jn)}

= jN is more efficient than the naive MC (with sample of size 2N) if m(X,,)
and m(Y,,) are negatively correlated

Basic result: if g(u) is monotonic on 0 < u < 1, then

corr{g(U),g9(1—-U)} <0

Thus F~1(U) and F~1(1 — U) are negatively correlated with distribution F

Linda Mhalla Week 8: Monte Carlo (MC) 2024-11-08 28/33



Variance Reduction: Stratified Sampling

@ Break sampling space into strata and sample appropriate number of

observations in each
o Compute the naive MC estimator in each stratum and sum over all

strata
We want to estimate J = E{m(X)}. Let W be another r.v. s.t.

e p, =Pr(W e A,), with A, CR, is easily computed
e we know how to generate X | W € A,

Assuming A4, ..., A, is a partition of R and denoting
— 2 _
Ji=E{m(X) | W € A;} and o5 = var{m(X) | W € A}, we have

J — [E[[E{m ‘ W} ij ]7 and J t’l"N ijj]7Nj
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Variance Reduction: Stratified Sampling

@ Method relies on conditional variance:
var{m(X)} = E[var{m(X)|I}] + var[E{m(X) | I}]
Thus,
var{m(X)} > E[var{m(X)|I}] = ij o

For instance, assuming proportional allocation, i.e., N; = Np,, then

o2 X" po? _
~ » ~ -
var(Jy, v) = ijl pJQT\; = ]T < var(J y)
J

@ Variance reduction substantial if I accounts for a large fraction of the
variance of m(X)

@ Variance reduction depends on the allocation in each stratum. Thus,

we can minimize Var(JStT ~) subject to Z N, =N
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Feedback for the mini-project

@ Good points
e original datasets
e going the extra mile to dig deeper in the data like creating new
variables
@ nice introductions and good referencing
@ Points to improve
o be careful when interpreting results (do not jump on conclusions), e.g.,
correlation coefficients, latent confounders
remember to log-transform when needed ..
captions missing!!!
code appearing in the text
bad sectioning of the text (or no sectioning!)
bad citations or missing references
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Assignment [5 %]

Go to Assignment 6 for details.
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