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Introduction

@ population F
@ random sample X' = {X,,..., Xy} from F
@ characteristic of interest § = 0(F)

Goal: Extract information about € using X' and find reliable frequentist
assessment of uncertainty

Leading Example: The mean 6 = E(X,) = [ 2 dF(x) A

F' can be estimated:

@ parametrically
o assuming F € {F, | A € A C RP} for some integer p, take F = F, for
an estimator A of the parameter vector A obtained by, e.g., MLE
@ non-parametrically
o by the ECDF, i.e., F = Fy, where Fiy(z) = + Zi;l 1ix, <af

n-=
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Introduction

@ population F'
e random sample X' = {X},..., Xy} from F
@ characteristic of interest § = 0(F)

Leading Example: The mean § = EX, = [z dF(z)

o parametrically: 6 = [ xdF;(x)
@ non-parametrically: 6= fxdﬁN(x) = % Zi\le X, A

Key questions

o How does 6 behave when samples are repeatedly taken from F'?
@ How can we use knowledge of this to learn about 67
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Introduction: Thought Experiment

Imagine F' is known. Then, we could answer the questions by

@ analytical calculation
@ Monte Carlo simulation

Forr=1,...,R:
iid.
@ generate random sample z7, ..., 2%y ~ F
e compute 0 using x7, ..., T}

@ output after R iterations:
01,05,...,0%
Use é{, S5y ee ,5}‘% to estimate sampling distribution of 6

= If R — o0, then get perfect match to theoretical calculation (if
available), i.e., Monte Carlo error disappears completely. In practice R is
finite, so some error remains
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Introduction

population F

random sample X' = {X,,..., Xy} from F'

characteristic of interest # = 0(F") (emphasize dep. on F’)
sample characteristic § = 6(F)

sampling distribution of ¢
e bias or MSE needed to rate the estimator - all characteristics of
sampling distribution
e quantiles of sampling distribution needed for Cls or testing on 6

Leading Example: The mean 6 = E(X;) = [ 2dF(z)

e non-parametrically: 6 = fa:dﬁN(a:) =+ 27]:[:1 X,
o if F is Gaussian, then § ~ N(0, "—;) is the sampling distribution

e without Gaussianity, there is still a sampling distribution, we just don't
know what it is A
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Introduction

Inference about 6 is based on the sampling distribution, which is given
by the sampling process

@ If we control the sampling process, we can approximate the sampling

distribution by Monte Carlo
e F unknown but F'is known. Then, the (re)sampling distribution can

be studied/approximated by Monte Carlo

The Bootstrap Idea: The (re)sampling process from F can mimic the
sampling process from F' itself

Sampling (real world): F= X,,..,Xy = 0=0(F)
Resampling (bootstrap world): F = Xi, ..., Xy =0 = 9(1?*)
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[[lustration

Real World Bootstrap World

Unknown Observed Estimated 5

Probability Random Probability ootstrap

Model Sample ModAeI Sample
P—’X:(Xl,..,,xn) P x*:(xf,...,x,’;)

J

T(x)
Statistic of Interest

|

T(x*)
Bootstrap Replication

= removes need for mathematical skills but still perform well in practice
(usually!)
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Principle of the Non-Parametric Bootstrap

Bootstrapping an estimator 6= g(Xy,..., X ) can be done as follows
o Generate a bootstrap sample

iid.
X5, Xy By

(take N uniform random draws with replacement from the original dataset
{X,,..., Xy} = resampling the data)

o Compute the bootstrapped estimator

~

0 =g(X7, ..., XN)
o Repeat the first two steps B times to obtain §*1, ... 6*B

As N — oo and B — 00, bootstrap sample moments of 5*1, ,é*B .
converge to the corresp. sample moments of sampling distribution of 8

Question: What about the parametric bootstrap?
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Principle of the Non-Parametric Bootstrap

Bootstrapping an estimator 6= g(Xy,..., X ) can be done as follows

o Generate a bootstrap sample
iid. A
X7, Xy ~ Fy
(take N uniform random draws with replacement from the original dataset
{X,,..., Xy} = resampling the data)

o Compute the bootstrapped estimator

~

0 =g(X7, ..., XN)

o Repeat the first two steps B times to obtain §*1, ... 6*B

As N — oo and B — 00, bootstrap sample moments of 5*1, ,é*B .
converge to the corresp. sample moments of sampling distribution of 8

Question: What about the parametric bootstrap? replace FN by a

parametric estimate F’
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Using the 0*® to estimate Standard Errors

Bootstrap replicates 0% used to assess quality of 0
o Variance of 6 as estimator of 6 is
Var(f) = Ex[{6 — Ex(0)}?]
Moving from the real world to the bootstrap world,

B
Var EZ 9*b 9*

i.e., the sample variance of the bootstrap replicates estimates the variance
of the estimator (real world)
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Using the 0*® to estimate the Bias

Bootstrap replicates 0%t used to estimate properties of 0

e Bias of f as estimator of 6 is

i.i.d

bias(0) = bias(F) = E(f | X,,..., Xy = F)—0(F)

estimated by replacing unknown F' by known estimate F

bias(F) = E(0 | X,,..., Xy = F)—0(F)

=[E(6*) -0

@ Replace theoretical expectation by empirical average

S
~ ~

= B
bias(6) = bias(F) ~ 6* — = B~ 3 G0 _ §

Question: How can we use this to improve inference?
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Bias Correction: Another Example

X, ..., Xy iid. with E]X]? < 00
characteristic of interest: § = 3, where u = E(X)

~ —~ 3 —~ .3

empirical estimator: § = ( [z dFy) = (Xy) is biased
o bias b := bias(d) = E(A) — 6 of order N1

bootstrap: estimate the bias b as b*

bias-corrected estimator

G— ¥
has smaller order bias (order N~?2)

Something similar happens more generally for § = g(1) when g is
sufficiently smooth
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Bias Correction: Another Example

X, ., Xy iid. with E|X 2 < o0

Interest in @ = 3, where u = E(X,), 0 = E(X; — )2, and
v =E(X; —p)?

estimator: 6 = (fxd]:—'\N)B = (X'N)S is biased

N
S 3
Ep(0) = Ep(X%) = Elp+ N1 (X, —p)]” = p* + N13u0% + N2y
n=1 =b=0(N-1)

bootstrap: estimate the bias b := bias(é) =Ef— 6 as b*
N
~ - - - 3
Ep 0" =Ep {(X3)?} =Eg {Xny+ N1 (X5 —Xp)}
n=1

= X3 + N13X 52 + N25

—b*

@ bias-corrected estimator: ¢ = 6 — b* has smaller order bias

Er(f;) = 1* + N713{uo? — Ep(Xy52)} +N 72 {y — ()}
—_—

O(N—1) O(N~1)
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Leading Example: Using the 0% for Cl

o X,,..,Xy * Fand§=0(F)=[2dF

0o f=Xyandd2=(N-1"12" (X, - Xy)?

n=1
e we want 0, such that P{# >0, }=1—q, for0 < a <1

(7

© Exact Cl. (rare) Assuming Gaussianity,

Xy—0
T=VN=L_~~ty, = P{T<ty (1—-a)}=1-a
(o2

and so we get a Cl with exact coverage

~

0> Xy — —~ty (1—a) =4,

VN

d
@ Asymptotic Cl. Assuming only EX? < 0o, T'— N(0,1) and thus

P{>0 ~1—a for 0,=Xy— 2(1—a)

a

5
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Leading Example: Using the 0% for Cl

© Bootstrap Cl. Let EX? < co and X7, ..., X% be a bootstrap sample from
the ECDF Fly

Bl — N * ~ % N * Y *
get Xy =N"1> " X;and5? = ﬁznﬂ(Xn — X%)?

Xy—Xn
a-\*

set up the bootstrap statistic 7% = v N

@ B bootstrap copies 17, ..., T used to estimate the dist. of T’

Data Resamples
X ={X{1,, X] ny} = T

X={X1,..,Xn} = { : :
X ={X5 1, X5 N = Th

@ take ¢*(1 — «) the sample (1 — «)—quantile of 77, ..., T

@ instead of 6, = X, — \/%z(l — «), consider
br =Xy — —~a*(1—a)

VN
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Leading Example: Coverage Comparison

@ Asymptotic CI. T = VN2 L 7(0,1)

By the Berry-Esseen theorem
P(T<)<I>()(9<1>f I
x)—P(x) = — or all z
F — \/N
- o
= P(02Xy-—=:01-0a))=P{T<2(1-a
v i) = PT < (1 —a))

"

—1-a+0 ()

l.e., the coverage of the asymptotic Cl is exact up to O(N~1/2)
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Leading Example: Coverage Comparison

© Bootstrap Cl. (assuming “ideal” bootstrap with infinite nbr of replicates)

From Edgeworth expansions (complicated!):

1 1
PA(T < 2) = ¥(a) + —a(@)ola) + 0 ()
Py (T* < a) = ®(a) + 1N&(m)¢(x) Lo (%)

where a(z) — a(z) = O(N~Y/?)
Hence, Pp(T < x) — PﬁN(T* <z)=0 (%) and

Y o * * 1

= P(9> Xy - mq*(l—a)) — PAT < g (1—a)} +0 (N)
:é*a
=1—a+0 (%)

l.e. the coverage of the bootstrap Cl is exact up to (NN ~1): faster conv. rate
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Leading Example: Sampling Distribution

N =30 and B = 1000 N =200 and B = 1000
24 — ue di - normal approx. 3 — true df - normal approx.
— e di - bootsirap approx —  true df - bootstrap approx
E] A
S
o A A Yl o

8 : g e T T
el = o M0 D Y RV
= i W v e o

005
-0.05

-010
-0.10

Linda Mhalla Week 9: Bootstrap 2024-11-15 17/29



Problem (1) with the non-parametric bootstrap

Use non-parametric bootstrap to estimate characteristics of the median

For a sample of size N = 2m + 1, possible distinct values of 0* are
X(l) < K X(N)' and

px) =3 (V) (5) (%)

- exact calculations of mean, variance (etc.) of bootstrap distribution are
possible and converge to correct values (as N — o0)

= consistency holds

@ but 0 concentrated on sample values and very vulnerable to unusual
values

= discreteness makes convergence very slow

E.g., bootstrap variance of the median can be very poor for heavy-tailed
distributions and small sample sizes
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Problem (1) with the non-parametric bootstrap

e Simulate from a sample with N = 11 from (standard) Cauchy
@ Compute medians from B = 1000 bootstrap samples and center with
true median (=0)

Sample Quantiles.

Ouantiles of Standard normal
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Problem (2) with the non-parametric bootstrap

e Xq,...,Xy~U(0,0)iid., >0
o MLE: f = max (X, ..., Xy)
o T =N(0—0)/0~ Exp(1)
@ Non-parametric bootstrap: X7, ..., X3 sampled indep. from
X1, ..., X with replacement
o Bootstrap estimate §* = max (X3, ... XN)
o T* = N(O—6%)/0

@ Large probability mass at 0. In fact
~ ~ N—o0
P(0r=0)=1-(1-1/N)N "1—e' ~.632

= the limiting distribution of 7™ cannot be Exp(1)

Bootstrap fails here and we will see why (consistency fails!)
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Problem (2) with the non-parametric bootstrap

Fn(x)

00 02 04 06 08 10

Nonparametric Bootstrap

— ‘_
] [ ]
] -
- -

o -Q——GO—Q—‘_

T T T T I
0.80 0.85 0.90 0.95 1.00
X

Linda Mhalla

Fn(x)

00 02 04 06 08 1.0

Week 9: Bootstrap

Parametric Bootstrap

0.80 0.85 0.90 0.95 1.00
X
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(Non-parametric) Bootstrap: Summary

o let ¥ ={X,,..., Xy} be a random sample from F
@ quantity of interest: 6 = 0(F)
@ (plug-in) estimator: 0= 0(Fy)
o write = 0[], since F\N and thus the estimator depends on the
sample
o the distribution Fip v of a scaled estimator T' = 9(6,0) = g(0]X],0)

is of interest, e.g., T' = \/N(é —0)
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(Non-parametric) Bootstrap: Summary

o let ¥ ={X,,..., Xy} be a random sample from F
@ quantity of interest: 6 = 0(F)
@ (plug-in) estimator: 0= 0(Fy)
o write = 0[], since F\N and thus the estimator depends on the
sample

o the distribution Fip v of a scaled estimator T' = 9(6,0) = g(0]X],0)
is of interest, e.g., T' = \/N(é —0)
The workflow of the bootstrap is as follows for some B € N:

Data Resamples
Xy ={X{ 1, X1 N} = T7=g(0[X7],0[X])

X={X1,.., XN} = { : ;
Xg={X5 1, Xg n} = Tp=g6X5] 00X)

Fp n now estimated by FT g(z) = B! Zb Vi <al

@ any characteristic of F7 \y can be estimated by the char. of F\}B(x)
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Bootstrap: Summary

Bootstrap combines

@ the plug-in principle: sample is used to estimate F' (=~ F)

@ Monte Carlo principle: simulation replaces theoretical calculation

@ two sources of variability
o sampling variability (we only have a sample of size V)
e bootstrap resampling variability (only B bootstrap samples)

bootstrap
sample
: samples ~---__| “l
| x*1 —— T(x*!)
1
1
unknown A
probability i
_
measure
P
X*B . T(X*B)
L | |
sampling variability bootstrap sampling variability
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Bootstrap: Common Questions

@ How many bootstraps/Monte Carlo draws?

e B > 200 to estimate bias or variance (next week)
e B =107 is taken most commonly
o B > 10%* better for small/large quantiles
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Bootstrap: Common Questions

@ How many bootstraps/Monte Carlo draws?

e B > 200 to estimate bias or variance (next week)
e B =107 is taken most commonly
o B > 10%* better for small/large quantiles

o Why take resamples of size N7

e to mimic sampling properties of samples like the original one
e sometimes we take m < N to achieve validity of bootstrap, e.g., for
extreme quantiles or median (to avoid discreteness)
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Bootstrap: Common Questions

@ How many bootstraps/Monte Carlo draws?

e B > 200 to estimate bias or variance (next week)
e B =107 is taken most commonly
o B > 10%* better for small/large quantiles

o Why take resamples of size N7

e to mimic sampling properties of samples like the original one
e sometimes we take m < N to achieve validity of bootstrap, e.g., for
extreme quantiles or median (to avoid discreteness)

@ Why resample from the EDF?

o Non-parametric MLE of F', so it's natural when no restrictions on F’
e Smooth estimate of the EDF (KDE) can be used when discreteness is
severe, e.g. the case of the median
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Bootstrap: Common Questions

@ How many bootstraps/Monte Carlo draws?

e B > 200 to estimate bias or variance (next week)
e B =107 is taken most commonly
o B > 10%* better for small/large quantiles

o Why take resamples of size N7

e to mimic sampling properties of samples like the original one
e sometimes we take m < N to achieve validity of bootstrap, e.g., for
extreme quantiles or median (to avoid discreteness)

@ Why resample from the EDF?
o Non-parametric MLE of F', so it's natural when no restrictions on F’
e Smooth estimate of the EDF (KDE) can be used when discreteness is
severe, e.g. the case of the median

@ When does the bootstrap work (“work” = consistency)?
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Consistency

Bootstrap setup:

o I'=g(X,,...,Xy | F) is a scaled estimator with unknown (wanted)

distribution Fr y, with (X, ..., Xy | ) continuous

@ bootstrap statistic 7* = g(X7,..., X} | ﬁ) has F7.  also unknown

@ the Monte Carlo proxy F\r} g is used instead of F7.

Glivenko-Cantelli:

sup F}B(ac)— Fan@)| =0 as B— oo

Question: Under which conditions the bootstrap “works” (gives
mathematically correct answers), i.e.,

Frn — Fry, as N — oo
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Consistency

@ F n must converge weakly to some continuous limit Frp

/h(t)dFTJV(t) — /h(t)dFTpo(t) as n — oo and Vh integrable

=> to ensure that the wanted distribution converges to a
non-degenerate limit

@ the convergence must be uniform

= to ensure that F7 \ approaches Fr o for all possible sequences of F
(which changes as NV increases)

Then, the bootstrap is consistent, i.e., Vi and € > 0

n—oo

P{| Fr y(t) = Fp (t) [> €} — 0

Remark: second condition fails in the case of the maximum of a uniform!
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Consistency for Smooth Transformation of the Mean

Conditions that ensure consistency of the bootstrap are guaranteed for
smooth transformations of the sample mean

Theorem: Let X,,..., Xy beiid. st. E(X?) <ooand T = h(Xy),
where h is continuously differentiable at ;1 = E(X;) and such that
h(p) # 0. Then

a.s.

— 0 as N — >

sup F%N(CU) - FT,N(JU)
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Remarks

@ bootstrap should not be used blindly
e verification via theory
e and/or via simulations
o folk knowledge
o typically “works” when T asymptotically normal and data i.i.d.
o “doesn't work” when working with

o statistics that do not exist (mean of Cauchy distribution)

@ non-smooth transformations of the sample (sample quantiles):
non-parametric bootstrap still valid but may not work well for finite
samples /Bootstrap not consistent for order statistics

@ non-i.i.d. regimes (e.g. time series): see block bootstrap or bootstrap
in regression settings

@ bootstrap replaces analytic calculations (in particular the Delta
method), but showing that it actually works requires even deeper
analytic calculations

o faster rates can be achieved by bootstrap

e hard to prove, but often happens, e.g., when working with a skewed
distribution
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