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Introduction

population 𝐹
random sample 𝒳 = {𝑋1, … , 𝑋𝑁} from 𝐹
characteristic of interest 𝜃 = 𝜃(𝐹)

Goal: Extract information about 𝜃 using 𝒳 and find reliable frequentist
assessment of uncertainty

Leading Example: The mean 𝜃 = 𝔼(𝑋1) = ∫ 𝑥 𝑑𝐹(𝑥) Δ
𝐹 can be estimated:

parametrically
assuming 𝐹 ∈ {𝐹𝜆 ∣ 𝜆 ∈ Λ ⊂ ℝ𝑝} for some integer 𝑝, take 𝐹 = 𝐹𝜆̂ for
an estimator 𝜆̂ of the parameter vector 𝜆 obtained by, e.g., MLE

non-parametrically
by the ECDF, i.e., 𝐹 = 𝐹𝑁 where 𝐹𝑁(𝑥) = 1

𝑁 ∑𝑁
𝑛=1 𝟙[𝑋𝑛≤𝑥]
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Introduction

population 𝐹
random sample 𝒳 = {𝑋1, … , 𝑋𝑁} from 𝐹
characteristic of interest 𝜃 = 𝜃(𝐹)

Leading Example: The mean 𝜃 = 𝔼𝑋1 = ∫ 𝑥 𝑑𝐹(𝑥)

parametrically: ̂𝜃 = ∫ 𝑥𝑑𝐹𝜆̂(𝑥)
non-parametrically: ̂𝜃 = ∫ 𝑥𝑑𝐹𝑁(𝑥) = 1

𝑁 ∑𝑁
𝑛=1 𝑋𝑛 Δ

Key questions

How does ̂𝜃 behave when samples are repeatedly taken from 𝐹?
How can we use knowledge of this to learn about 𝜃?
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Introduction: Thought Experiment
Imagine 𝐹 is known. Then, we could answer the questions by

analytical calculation
Monte Carlo simulation

For 𝑟 = 1, … , 𝑅 :

generate random sample 𝑥∗
1, … , 𝑥∗

𝑁
i.i.d.∼ 𝐹

compute ̂𝜃∗
𝑟 using 𝑥∗

1, … , 𝑥∗
𝑁

output after 𝑅 iterations:

̂𝜃∗
1, ̂𝜃∗

2, … , ̂𝜃∗
𝑅

Use ̂𝜃∗
1, ̂𝜃∗

2, … , ̂𝜃∗
𝑅 to estimate sampling distribution of ̂𝜃

⇒ If 𝑅 → ∞, then get perfect match to theoretical calculation (if
available), i.e., Monte Carlo error disappears completely. In practice 𝑅 is
finite, so some error remains
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Introduction

population 𝐹
random sample 𝒳 = {𝑋1, … , 𝑋𝑁} from 𝐹
characteristic of interest 𝜃 = 𝜃(𝐹) (emphasize dep. on 𝐹 )
sample characteristic ̂𝜃 = 𝜃(𝐹)
sampling distribution of ̂𝜃

bias or MSE needed to rate the estimator - all characteristics of
sampling distribution
quantiles of sampling distribution needed for CIs or testing on 𝜃

Leading Example: The mean 𝜃 = 𝔼(𝑋1) = ∫ 𝑥𝑑𝐹(𝑥)

non-parametrically: ̂𝜃 = ∫ 𝑥𝑑𝐹𝑁(𝑥) = 1
𝑁 ∑𝑁

𝑛=1 𝑋𝑛
if 𝐹 is Gaussian, then ̂𝜃 ∼ 𝒩(𝜃, 𝜎2

𝑁 ) is the sampling distribution
without Gaussianity, there is still a sampling distribution, we just don’t
know what it is Δ
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Introduction

Inference about 𝜃 is based on the sampling distribution, which is given
by the sampling process

If we control the sampling process, we can approximate the sampling
distribution by Monte Carlo
𝐹 unknown but 𝐹 is known. Then, the (re)sampling distribution can
be studied/approximated by Monte Carlo

The Bootstrap Idea: The (re)sampling process from 𝐹 can mimic the
sampling process from 𝐹 itself

Sampling (real world): 𝐹 ⟹ 𝑋1, … , 𝑋𝑁 ⟹ ̂𝜃 = 𝜃(𝐹)
Resampling (bootstrap world): 𝐹 ⟹ 𝑋⋆

1, … , 𝑋⋆
𝑁 ⟹ ̂𝜃⋆ = 𝜃(𝐹 ⋆)
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Illustration

⇒ removes need for mathematical skills but still perform well in practice
(usually!)
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Principle of the Non-Parametric Bootstrap
Bootstrapping an estimator ̂𝜃 = 𝑔(𝑋1, … , 𝑋𝑁) can be done as follows

Generate a bootstrap sample

𝑋⋆
1, … , 𝑋⋆

𝑁
i.i.d.∼ ̂𝐹𝑁

(take 𝑁 uniform random draws with replacement from the original dataset
{𝑋1, … , 𝑋𝑁} ⇒ resampling the data)

Compute the bootstrapped estimator
̂𝜃⋆ = 𝑔(𝑋⋆

1, … , 𝑋⋆
𝑁)

Repeat the first two steps 𝐵 times to obtain ̂𝜃⋆1, … , ̂𝜃⋆𝐵

As 𝑁 → ∞ and 𝐵 → ∞, bootstrap sample moments of ̂𝜃⋆1, … , ̂𝜃⋆𝐵

converge to the corresp. sample moments of sampling distribution of ̂𝜃
Question: What about the parametric bootstrap?

replace ̂𝐹𝑁 by a
parametric estimate ̂𝐹
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Question: What about the parametric bootstrap? replace ̂𝐹𝑁 by a
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Using the ̂𝜃⋆𝑏 to estimate Standard Errors

Bootstrap replicates ̂𝜃⋆𝑏 used to assess quality of ̂𝜃
Variance of ̂𝜃 as estimator of 𝜃 is

Var( ̂𝜃) = 𝔼𝐹 [{ ̂𝜃 − 𝔼𝐹 ( ̂𝜃)}2]

Moving from the real world to the bootstrap world,

Var( ̂𝜃) ≈ 1
𝐵

𝐵
∑
𝑏=1

( ̂𝜃⋆𝑏 − ̄̂𝜃⋆)2,

i.e., the sample variance of the bootstrap replicates estimates the variance
of the estimator (real world)
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Using the ̂𝜃⋆𝑏 to estimate the Bias
Bootstrap replicates ̂𝜃⋆𝑏 used to estimate properties of ̂𝜃

Bias of ̂𝜃 as estimator of 𝜃 is

bias( ̂𝜃) = bias(𝐹) = 𝔼( ̂𝜃 ∣ 𝑋1, … , 𝑋𝑁
i.i.d.∼ 𝐹) − 𝜃(𝐹)

estimated by replacing unknown 𝐹 by known estimate ̂𝐹

bias( ̂𝐹 ) = 𝔼( ̂𝜃 ∣ 𝑋1, … , 𝑋𝑁
i.i.d.∼ ̂𝐹) − 𝜃( ̂𝐹 )

= 𝔼( ̂𝜃⋆) − ̂𝜃

Replace theoretical expectation by empirical average

̂bias( ̂𝜃) = bias( ̂𝐹 ) ≈ ̄̂𝜃⋆ − ̂𝜃 = 𝐵−1
𝐵

∑
𝑏=1

̂𝜃⋆𝑏 − ̂𝜃

Question: How can we use this to improve inference?
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Bias Correction: Another Example

𝑋1, … , 𝑋𝑁 i.i.d. with 𝔼|𝑋1|3 < ∞
characteristic of interest: 𝜃 = 𝜇3, where 𝜇 = 𝔼(𝑋1)
empirical estimator: ̂𝜃 = ( ∫ 𝑥 𝑑𝐹𝑁)3 = (𝑋̄𝑁)3 is biased

bias 𝑏 ∶= bias( ̂𝜃) = 𝔼( ̂𝜃) − 𝜃 of order 𝑁−1

bootstrap: estimate the bias 𝑏 as 𝑏̂⋆

bias-corrected estimator
̂𝜃⋆
𝑏 = ̂𝜃 − 𝑏̂⋆

has smaller order bias (order 𝑁−2)

Something similar happens more generally for 𝜃 = 𝑔(𝜇) when 𝑔 is
sufficiently smooth
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Bias Correction: Another Example
𝑋1, … , 𝑋𝑁 i.i.d. with 𝔼|𝑋1|3 < ∞
Interest in 𝜃 = 𝜇3, where 𝜇 = 𝔼(𝑋1), 𝜎2 = 𝔼(𝑋1 − 𝜇)2, and
𝛾 = 𝔼(𝑋1 − 𝜇)3

estimator: ̂𝜃 = ( ∫ 𝑥 𝑑𝐹𝑁)3 = (𝑋̄𝑁)3 is biased

𝔼𝐹 ( ̂𝜃) = 𝔼𝐹 (𝑋̄3
𝑁) = 𝔼[𝜇 + 𝑁−1

𝑁
∑
𝑛=1

(𝑋𝑛 − 𝜇)]3 = 𝜇3 + 𝑁−13𝜇𝜎2 + 𝑁−2𝛾⏟⏟⏟⏟⏟⏟⏟
=𝑏=𝒪(𝑁−1)

bootstrap: estimate the bias 𝑏 ∶= bias( ̂𝜃) = 𝔼 ̂𝜃 − 𝜃 as ̂𝑏⋆

𝔼𝐹𝑁
̂𝜃⋆ = 𝔼𝐹𝑁

{(𝑋̄⋆
𝑁)3} = 𝔼𝐹𝑁

{𝑋̄𝑁 + 𝑁−1
𝑁

∑
𝑛=1

(𝑋⋆
𝑛 − 𝑋̄𝑁)}3

= 𝑋̄3
𝑁 + 𝑁−13𝑋̄𝑁𝜎̂2 + 𝑁−2𝛾̂⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑏̂⋆

bias-corrected estimator: ̂𝜃⋆
𝑏 = ̂𝜃 − ̂𝑏⋆ has smaller order bias

𝔼𝐹 ( ̂𝜃⋆
𝑏) = 𝜇3 + 𝑁−13 {𝜇𝜎2 − 𝔼𝐹 (𝑋̄𝑁 𝜎̂2)}⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒪(𝑁−1)

+𝑁−2 {𝛾 − 𝔼𝐹 ( ̂𝛾)}⏟⏟⏟⏟⏟
𝒪(𝑁−1)
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Leading Example: Using the ̂𝜃∗𝑏 for CI
𝑋1, … , 𝑋𝑁

i.i.d.∼ 𝐹 and 𝜃 = 𝜃(𝐹) = ∫ 𝑥𝑑𝐹
̂𝜃 = 𝑋̄𝑁 and 𝜎̂2 = (𝑁 − 1)−1 ∑𝑁

𝑛=1(𝑋𝑖 − 𝑋̄𝑁)2

we want 𝜃𝛼 such that 𝑃{𝜃 ≥ 𝜃𝛼} = 1 − 𝛼, for 0 < 𝛼 < 1
1 Exact CI. (rare) Assuming Gaussianity,

𝑇 =
√

𝑁 𝑋̄𝑁 − 𝜃
𝜎̂ ∼ 𝑡𝑁−1 ⇒ 𝑃{𝑇 ≤ 𝑡𝑁−1(1 − 𝛼)} = 1 − 𝛼

and so we get a CI with exact coverage

𝜃 ≥ 𝑋̄𝑁 − 𝜎̂√
𝑁

𝑡𝑁−1(1 − 𝛼) ∶= ̂𝜃𝛼

2 Asymptotic CI. Assuming only 𝔼𝑋2
1 < ∞, 𝑇 𝑑→ 𝒩(0, 1) and thus

𝑃{𝜃 ≥ ̂𝜃𝛼} ≈ 1 − 𝛼 for ̂𝜃𝛼 = 𝑋̄𝑁 − 𝜎̂√
𝑁

𝑧(1 − 𝛼)
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Leading Example: Using the ̂𝜃∗𝑏 for CI
3 Bootstrap CI. Let 𝔼𝑋2

1 < ∞ and 𝑋⋆
1, … , 𝑋⋆

𝑁 be a bootstrap sample from
the ECDF 𝐹𝑁

get 𝑋⋆
𝑁 = 𝑁−1 ∑𝑁

𝑛=1 𝑋⋆
𝑛 and 𝜎̂⋆2 = 1

𝑁−1 ∑𝑁
𝑛=1(𝑋⋆

𝑛 − 𝑋̄⋆
𝑁)2

set up the bootstrap statistic 𝑇 ⋆ =
√

𝑁 𝑋⋆
𝑁−𝑋𝑁

𝜎̂⋆

𝐵 bootstrap copies 𝑇 ⋆
1 , … , 𝑇 ⋆

𝐵 used to estimate the dist. of 𝑇
Data Resamples

𝒳 = {𝑋1, … , 𝑋𝑁} ⟹
⎧{
⎨{⎩

𝒳⋆
1 = {𝑋⋆

1,1, … , 𝑋⋆
1,𝑁} ⟹ 𝑇⋆

1
⋮ ⋮

𝒳⋆
𝐵 = {𝑋⋆

𝐵,1, … , 𝑋⋆
𝐵,𝑁} ⟹ 𝑇⋆

𝐵

take 𝑞⋆(1 − 𝛼) the sample (1 − 𝛼)−quantile of 𝑇 ⋆
1 , … , 𝑇 ⋆

𝐵

instead of ̂𝜃𝛼 = 𝑋̄𝑁 − 𝜎̂√
𝑁 𝑧(1 − 𝛼), consider

̂𝜃⋆
𝛼 = 𝑋̄𝑁 − 𝜎̂√

𝑁
𝑞⋆(1 − 𝛼)
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Leading Example: Coverage Comparison

2 Asymptotic CI. 𝑇 =
√

𝑁 𝑋̄𝑁−𝜃
𝜎̂

⋅∼ 𝒩(0, 1)
By the Berry-Esseen theorem

𝑃𝐹 (𝑇 ≤ 𝑥) − Φ(𝑥) = 𝒪 ( 1√
𝑁

) for all 𝑥

⇒ 𝑃 (𝜃 ≥ 𝑋̄𝑁 − 𝜎̂√
𝑁

𝑧(1 − 𝛼)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

= ̂𝜃𝛼

) = 𝑃{𝑇 ≤ 𝑧(1 − 𝛼)}

= 1 − 𝛼 + 𝒪 ( 1√
𝑁

)

I.e., the coverage of the asymptotic CI is exact up to 𝒪(𝑁−1/2)
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Leading Example: Coverage Comparison
3 Bootstrap CI. (assuming “ideal” bootstrap with infinite nbr of replicates)

From Edgeworth expansions (complicated!):

𝑃𝐹 (𝑇 ≤ 𝑥) = Φ(𝑥) + 1√
𝑁

𝑎(𝑥)𝜙(𝑥) + 𝒪 ( 1
𝑁 )

𝑃𝐹𝑁
(𝑇 ⋆ ≤ 𝑥) = Φ(𝑥) + 1√

𝑁
̂𝑎(𝑥)𝜙(𝑥) + 𝒪 ( 1

𝑁 )

where ̂𝑎(𝑥) − 𝑎(𝑥) = 𝒪(𝑁−1/2)
Hence, 𝑃𝐹 (𝑇 ≤ 𝑥) − 𝑃𝐹𝑁

(𝑇 ⋆ ≤ 𝑥) = 𝒪 ( 1
𝑁 ) and

⇒ 𝑃(𝜃 ≥ 𝑋̄𝑁 − 𝜎̂√
𝑁

𝑞⋆(1 − 𝛼)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

= ̂𝜃⋆𝛼

) = 𝑃𝐹 {𝑇 ∗ ≤ 𝑞∗(1 − 𝛼)} + 𝒪 ( 1
𝑁 )

= 1 − 𝛼 + 𝒪 ( 1
𝑁 )

I.e. the coverage of the bootstrap CI is exact up to 𝒪(𝑁−1): faster conv. rate
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Leading Example: Sampling Distribution
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Problem (1) with the non-parametric bootstrap
Use non-parametric bootstrap to estimate characteristics of the median

For a sample of size 𝑁 = 2𝑚 + 1, possible distinct values of ̂𝜃⋆ are
𝑋(1) < ⋯ < 𝑋(𝑁), and

𝑃 ( ̂𝜃⋆ > 𝑋(𝑙)) =
𝑚

∑
𝑟=0

( 𝑁
𝑟 ) ( 𝑙

𝑁 )
𝑟

(1 − 𝑙
𝑁 )

𝑁−𝑟

- exact calculations of mean, variance (etc.) of bootstrap distribution are
possible and converge to correct values (as 𝑁 → ∞)
⇒ consistency holds

but ̂𝜃⋆ concentrated on sample values and very vulnerable to unusual
values

⇒ discreteness makes convergence very slow
E.g., bootstrap variance of the median can be very poor for heavy-tailed
distributions and small sample sizes
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Problem (1) with the non-parametric bootstrap
Simulate from a sample with 𝑁 = 11 from (standard) Cauchy
Compute medians from 𝐵 = 1000 bootstrap samples and center with
true median (=0)
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Problem (2) with the non-parametric bootstrap

𝑋1, … , 𝑋𝑁 ∼ 𝑈(0, 𝜃) i.i.d., 𝜃 > 0
MLE: ̂𝜃 = max (𝑋1, … , 𝑋𝑁)

𝑇 = 𝑁(𝜃 − ̂𝜃)/𝜃 ⋅∼ 𝐸𝑥𝑝(1)
Non-parametric bootstrap: 𝑋∗

1, … , 𝑋∗
𝑁 sampled indep. from

𝑋1, … , 𝑋𝑁 with replacement
Bootstrap estimate ̂𝜃∗ = max (𝑋∗

1, … , 𝑋∗
𝑁)

𝑇 ⋆ = 𝑁( ̂𝜃 − ̂𝜃∗)/ ̂𝜃

Large probability mass at ̂𝜃. In fact
𝑃 ( ̂𝜃∗ = ̂𝜃) = 1 − (1 − 1/𝑁)𝑁 𝑁→∞⟶ 1 − 𝑒−1 ≈ .632

⇒ the limiting distribution of 𝑇 ∗ cannot be 𝐸𝑥𝑝(1)
Bootstrap fails here and we will see why (consistency fails!)
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Problem (2) with the non-parametric bootstrap
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(Non-parametric) Bootstrap: Summary
let 𝒳 = {𝑋1, … , 𝑋𝑁} be a random sample from 𝐹
quantity of interest: 𝜃 = 𝜃(𝐹)
(plug-in) estimator: ̂𝜃 = 𝜃(𝐹𝑁)

write ̂𝜃 = 𝜃[𝒳], since 𝐹𝑁 and thus the estimator depends on the
sample

the distribution 𝐹𝑇 ,𝑁 of a scaled estimator 𝑇 = 𝑔( ̂𝜃, 𝜃) = 𝑔(𝜃[𝒳], 𝜃)
is of interest, e.g., 𝑇 =

√
𝑁( ̂𝜃 − 𝜃)

The workflow of the bootstrap is as follows for some 𝐵 ∈ ℕ:
Data Resamples

𝒳 = {𝑋1, … , 𝑋𝑁} ⟹
⎧{
⎨{⎩

𝒳⋆
1 = {𝑋⋆

1,1, … , 𝑋⋆
1,𝑁} ⟹ 𝑇⋆

1 = 𝑔(𝜃[𝒳⋆
1], 𝜃[𝒳])

⋮ ⋮
𝒳⋆

𝐵 = {𝑋⋆
𝐵,1, … , 𝑋⋆

𝐵,𝑁} ⟹ 𝑇⋆
𝐵 = 𝑔(𝜃[𝒳⋆

𝐵], 𝜃[𝒳])

𝐹𝑇 ,𝑁 now estimated by 𝐹 ⋆
𝑇 ,𝐵(𝑥) = 𝐵−1 ∑𝐵

𝑏=1 𝕀[𝑇 ⋆
𝑏 ≤𝑥]

any characteristic of 𝐹𝑇 ,𝑁 can be estimated by the char. of 𝐹 ⋆
𝑇 ,𝐵(𝑥)
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(Non-parametric) Bootstrap: Summary
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Bootstrap: Summary
Bootstrap combines

the plug-in principle: sample is used to estimate 𝐹 (≈ ̂𝐹 )
Monte Carlo principle: simulation replaces theoretical calculation
two sources of variability

sampling variability (we only have a sample of size 𝑁)
bootstrap resampling variability (only 𝐵 bootstrap samples)
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Bootstrap: Common Questions

How many bootstraps/Monte Carlo draws?
𝐵 ≥ 200 to estimate bias or variance (next week)
𝐵 = 103 is taken most commonly
𝐵 ≥ 104 better for small/large quantiles

Why take resamples of size 𝑁?
to mimic sampling properties of samples like the original one
sometimes we take 𝑚 < 𝑁 to achieve validity of bootstrap, e.g., for
extreme quantiles or median (to avoid discreteness)

Why resample from the EDF?
Non-parametric MLE of 𝐹 , so it’s natural when no restrictions on 𝐹
Smooth estimate of the EDF (KDE) can be used when discreteness is
severe, e.g. the case of the median

When does the bootstrap work (“work” = consistency)?
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Consistency

Bootstrap setup:

𝑇 = 𝑔(𝑋1, … , 𝑋𝑁 ∣ 𝐹 ) is a scaled estimator with unknown (wanted)
distribution 𝐹𝑇 ,𝑁 , with 𝑔(𝑋1, … , 𝑋𝑁 ∣ ⋅) continuous
bootstrap statistic 𝑇 ⋆ = 𝑔(𝑋⋆

1, … , 𝑋⋆
𝑁 ∣ ̂𝐹 ) has 𝐹 ⋆

𝑇 ,𝑁 also unknown
the Monte Carlo proxy 𝐹 ⋆

𝑇 ,𝐵 is used instead of 𝐹 ⋆
𝑇 ,𝑁

Glivenko-Cantelli:

sup
𝑥

∣𝐹 ⋆
𝑇 ,𝐵(𝑥) − 𝐹 ⋆

𝑇 ,𝑁(𝑥)∣ 𝑎.𝑠.→ 0 as 𝐵 → ∞

Question: Under which conditions the bootstrap “works” (gives
mathematically correct answers), i.e.,

𝐹 ⋆
𝑇 ,𝑁 → 𝐹𝑇 ,𝑁 , as 𝑁 → ∞
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Consistency
1 𝐹𝑇 ,𝑁 must converge weakly to some continuous limit 𝐹𝑇 ,∞

∫ ℎ(𝑡)𝑑𝐹𝑇 ,𝑁(𝑡) → ∫ ℎ(𝑡)𝑑𝐹𝑇 ,∞(𝑡) as 𝑛 → ∞ and ∀ℎ integrable

⇒ to ensure that the wanted distribution converges to a
non-degenerate limit

2 the convergence must be uniform

⇒ to ensure that 𝐹 ⋆
𝑇 ,𝑁 approaches 𝐹𝑇 ,∞ for all possible sequences of ̂𝐹

(which changes as 𝑁 increases)

Then, the bootstrap is consistent, i.e., ∀𝑡 and 𝜖 > 0

𝑃{∣ 𝐹 ⋆
𝑇 ,𝑁(𝑡) − 𝐹𝑇 ,∞(𝑡) ∣> 𝜖} 𝑛→∞→ 0

Remark: second condition fails in the case of the maximum of a uniform!
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Consistency for Smooth Transformation of the Mean

Conditions that ensure consistency of the bootstrap are guaranteed for
smooth transformations of the sample mean

Theorem: Let 𝑋1, … , 𝑋𝑁 be i.i.d. s.t. 𝔼(𝑋2
1) < ∞ and 𝑇 = ℎ(𝑋̄𝑁),

where ℎ is continuously differentiable at 𝜇 = 𝔼(𝑋1) and such that
ℎ(𝜇) ≠ 0. Then

sup
𝑥

∣𝐹 ⋆
𝑇 ,𝑁(𝑥) − 𝐹𝑇 ,𝑁(𝑥)∣ 𝑎.𝑠.→ 0 as 𝑁 → ∞
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Remarks
bootstrap should not be used blindly

verification via theory
and/or via simulations

folk knowledge
typically “works” when 𝑇 asymptotically normal and data i.i.d.
“doesn’t work” when working with

statistics that do not exist (mean of Cauchy distribution)
non-smooth transformations of the sample (sample quantiles):
non-parametric bootstrap still valid but may not work well for finite
samples /Bootstrap not consistent for order statistics
non-i.i.d. regimes (e.g. time series): see block bootstrap or bootstrap
in regression settings

bootstrap replaces analytic calculations (in particular the Delta
method), but showing that it actually works requires even deeper
analytic calculations
faster rates can be achieved by bootstrap

hard to prove, but often happens, e.g., when working with a skewed
distribution
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