Week 9: Bootstrap MATH-517 Statistical Computation and Visualization

Linda Mhalla

2024-11-15

Introduction

- population F
- \bullet random sample $\mathcal{X} = \{X_1, \ldots, X_N\}$ from F
- characteristic of interest $\theta=\theta(F)$

Leading Example: The mean $\theta = \mathbb{E}(X_1) = \int x \, dF(x)$

F can be estimated:

- parametrically
 - assuming $F \in \{F_{\lambda} \mid \lambda \in \Lambda \subset \mathbb{R}^p\}$ for some integer p, take $\widehat{F} = F_{\widehat{\lambda}}$ for an estimator $\widehat{\lambda}$ of the parameter vector λ obtained by, e.g., MLE
- non-parametrically
 - by the ECDF, i.e., $\widehat{F}=\widehat{F}_N$ where $\widehat{F}_N(x)=\frac{1}{N}\sum_{n=1}^N\mathbbm{1}_{[X_n\leq x]}$

Introduction

- population F
- \bullet random sample $\mathcal{X} = \{X_1, \dots, X_N\}$ from F
- characteristic of interest $\theta=\theta(F)$

Leading Example: The mean $\theta = \mathbb{E} X_1 = \int x \, dF(x)$

• parametrically:
$$\hat{ heta} = \int x dF_{\hat{\lambda}}(x)$$

• non-parametrically:
$$\hat{ heta} = \int x d\widehat{F}_N(x) = rac{1}{N} \sum_{n=1}^N X_n$$

Key questions

• How does $\hat{\theta}$ behave when samples are repeatedly taken from F?

. .

• How can we use knowledge of this to learn about θ ?

Introduction: Thought Experiment

Imagine F is known. Then, we could answer the questions by

- analytical calculation
- Monte Carlo simulation

For $r=1,\ldots,R$:

- \bullet generate random sample $x_1^*,\ldots,x_N^* \stackrel{\rm i.i.d.}{\sim} F$
- \bullet compute $\hat{\theta}_r^*$ using x_1^*,\ldots,x_N^*
- output after R iterations:

$$\hat{\theta}_1^*, \hat{\theta}_2^*, \dots, \hat{\theta}_R^*$$

Use $\hat{\theta}_1^*, \hat{\theta}_2^*, \dots, \hat{\theta}_R^*$ to estimate sampling distribution of $\hat{\theta}$ \Rightarrow If $R \to \infty$, then get perfect match to theoretical calculation (if available), i.e., Monte Carlo error disappears completely. In practice R is finite, so some error remains

Introduction

- population F
- \bullet random sample $\mathcal{X} = \{X_1, \dots, X_N\}$ from F
- characteristic of interest $\theta = \theta(F)$ (emphasize dep. on F)
- sample characteristic $\hat{\theta}=\theta(\widehat{F})$
- sampling distribution of θ
 - bias or MSE needed to rate the estimator all characteristics of sampling distribution
 - $\bullet\,$ quantiles of sampling distribution needed for CIs or testing on $\theta\,$

Leading Example: The mean $\theta = \mathbb{E}(X_1) = \int x dF(x)$

- non-parametrically: $\hat{\theta} = \int x d\widehat{F}_N(x) = \frac{1}{N} \sum_{n=1}^N X_n$
- \bullet if F is Gaussian, then $\hat{\theta}\sim \mathcal{N}(\theta,\frac{\sigma^2}{N})$ is the sampling distribution
 - without Gaussianity, there is still a sampling distribution, we just don't know what it is Δ

Introduction

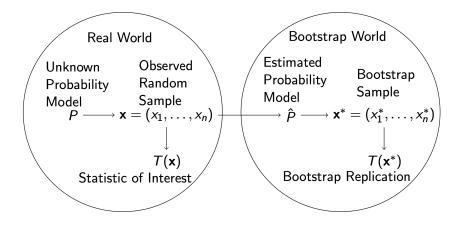
Inference about θ is based on the sampling distribution, which is given by the sampling process

- If we control the sampling process, we can approximate the sampling distribution by Monte Carlo
- F unknown but \widehat{F} is known. Then, the (re)sampling distribution can be studied/approximated by Monte Carlo

The Bootstrap Idea: The (re)sampling process from \widehat{F} can mimic the sampling process from F itself

$$\begin{array}{ll} \text{Sampling (real world):} & F \Longrightarrow X_1, \dots, X_N \Longrightarrow \widehat{\theta} = \theta(\widehat{F}) \\ \text{Resampling (bootstrap world):} & \widehat{F} \Longrightarrow X_1^\star, \dots, X_N^\star \Longrightarrow \widehat{\theta}^\star = \theta(\widehat{F}^\star) \end{array}$$

Illustration



 \Rightarrow removes need for mathematical skills but still perform well in practice (usually!)

Linda Mhalla

Week 9: Bootstrap

Principle of the Non-Parametric Bootstrap

Bootstrapping an estimator $\hat{\theta} = g(X_1, \dots, X_N)$ can be done as follows

• Generate a **bootstrap sample**

$$X_1^\star,\ldots,X_N^\star \stackrel{\mathrm{i.i.d.}}{\sim} \hat{F}_N$$

(take N uniform random draws with replacement from the original dataset $\{X_1,\ldots,X_N\}\Rightarrow$ resampling the data)

• Compute the bootstrapped estimator

$$\hat{\theta}^\star = g(X_1^\star, \dots, X_N^\star)$$

• Repeat the first two steps B times to obtain $\hat{\theta}^{\star 1}, \dots, \hat{\theta}^{\star B}$

As $N \to \infty$ and $B \to \infty$, bootstrap sample moments of $\hat{\theta}^{\star 1}, \dots, \hat{\theta}^{\star B}$ converge to the corresp. sample moments of sampling distribution of $\hat{\theta}$ **Question:** What about the parametric bootstrap?

Principle of the Non-Parametric Bootstrap

Bootstrapping an estimator $\hat{\theta} = g(X_1, \dots, X_N)$ can be done as follows

• Generate a **bootstrap sample**

$$X_1^\star,\ldots,X_N^\star \stackrel{\mathrm{i.i.d.}}{\sim} \hat{F}_N$$

(take N uniform random draws with replacement from the original dataset $\{X_1,\ldots,X_N\}\Rightarrow$ resampling the data)

• Compute the bootstrapped estimator

$$\hat{\theta}^\star = g(X_1^\star, \dots, X_N^\star)$$

• Repeat the first two steps B times to obtain $\hat{\theta}^{\star 1}, \dots, \hat{\theta}^{\star B}$

As $N \to \infty$ and $B \to \infty$, bootstrap sample moments of $\hat{\theta}^{\star 1}, \dots, \hat{\theta}^{\star B}$ converge to the corresp. sample moments of sampling distribution of $\hat{\theta}$

Question: What about the parametric bootstrap? replace \hat{F}_N by a parametric estimate \hat{F}

Using the $\hat{\theta}^{\star b}$ to estimate Standard Errors

Bootstrap replicates $\hat{\theta}^{\star b}$ used to assess quality of $\hat{\theta}$

• Variance of $\hat{\theta}$ as estimator of θ is

$$\mathsf{Var}(\hat{\theta}) = \mathbb{E}_F[\{\hat{\theta} - \mathbb{E}_F(\hat{\theta})\}^2]$$

Moving from the real world to the bootstrap world,

$$\mathrm{Var}(\hat{\theta})\approx\frac{1}{B}\sum_{b=1}^{B}\big(\hat{\theta}^{\star b}-\bar{\hat{\theta}}^{\star}\big)^{2},$$

i.e., the sample variance of the bootstrap replicates estimates the variance of the estimator (real world)

Using the $\hat{ heta}^{\star b}$ to estimate the Bias

Bootstrap replicates $\hat{\theta}^{\star b}$ used to estimate properties of $\hat{\theta}$

• Bias of $\hat{\theta}$ as estimator of θ is

$$\mathsf{bias}(\hat{\theta}) = \mathsf{bias}(F) = \mathbb{E}(\hat{\theta} \mid X_1, \dots, X_N \overset{\mathrm{i.i.d.}}{\sim} F) - \theta(F)$$

estimated by replacing unknown F by known estimate \hat{F}

$$\begin{split} \mathsf{bias}(\hat{F}) &= \mathbb{E}(\hat{\theta} \mid X_1, \dots, X_N \stackrel{\mathsf{i.i.d.}}{\sim} \hat{F}) - \theta(\hat{F}) \\ &= \mathbb{E}(\hat{\theta}^\star) - \hat{\theta} \end{split}$$

• Replace theoretical expectation by empirical average

$$\widehat{\mathsf{bias}(\hat{\theta})} = \mathsf{bias}(\hat{F}) \approx \bar{\hat{\theta}^\star} - \hat{\theta} = B^{-1} \sum_{b=1}^B \hat{\theta}^{\star b} - \hat{\theta}$$

Question: How can we use this to improve inference?

Linda Mhalla

Week 9: Bootstrap

10/29

- $\bullet \ X_1, \ldots, X_N$ i.i.d. with $\mathbb{E}|X_1|^3 < \infty$
- \bullet characteristic of interest: $\theta=\mu^3$, where $\mu=\mathbb{E}(X_1)$
- empirical estimator: $\hat{\theta}=\big(\int x\,d\widehat{F}_N\big)^3=\big(\bar{X}_N\big)^3$ is biased

• bias
$$b:=\mathrm{bias}(\hat{\theta})=\mathbb{E}(\hat{\theta})-\theta$$
 of order N^{-1}

- bootstrap: estimate the bias b as \hat{b}^{\star}
- bias-corrected estimator

$$\hat{\theta}^{\star}_b = \hat{\theta} - \hat{b}^{\star}$$

has smaller order bias (order N^{-2})

Something similar happens more generally for $\theta = g(\mu)$ when g is sufficiently smooth

11/29

Bias Correction: Another Example

- X_1, \ldots, X_N i.i.d. with $\mathbb{E}|X_1|^3 < \infty$ • Interest in $\theta = \mu^3$, where $\mu = \mathbb{E}(X_1)$, $\sigma^2 = \mathbb{E}(X_1 - \mu)^2$, and $\gamma = \mathbb{E}(X_1 - \mu)^3$ • estimator: $\hat{\theta} = \left(\int x \, d\widehat{F}_N\right)^3 = \left(\overline{X}_N\right)^3$ is biased $\mathbb{E}_F(\hat{\theta}) = \mathbb{E}_F(\overline{X}_N^3) = \mathbb{E}[\mu + N^{-1}\sum_{n=1}^N (X_n - \mu)]^3 = \mu^3 + \underbrace{N^{-1}3\mu\sigma^2 + N^{-2}\gamma}_{=b=\mathcal{O}(N^{-1})}$
- \bullet bootstrap: estimate the bias $b:={\rm bias}(\hat{\theta})=\mathbb{E}\hat{\theta}-\theta$ as \hat{b}^\star

$$\begin{split} \mathbb{E}_{\widehat{F}_N} \hat{\theta}^\star &= \mathbb{E}_{\widehat{F}_N} \{ (\bar{X}_N^\star)^3 \} = \mathbb{E}_{\widehat{F}_N} \{ \bar{X}_N + N^{-1} \sum_{n=1}^N (X_n^\star - \bar{X}_N) \}^3 \\ &= \bar{X}_N^3 + \underbrace{N^{-1} 3 \bar{X}_N \widehat{\sigma}^2 + N^{-2} \widehat{\gamma}}_{= \hat{b}^\star} \end{split}$$

 $\bullet\,$ bias-corrected estimator: $\hat{\theta}^{\star}_b = \hat{\theta} - \hat{b}^{\star}$ has smaller order bias

$$\mathbb{E}_{F}(\hat{\theta}_{b}^{\star}) = \mu^{3} + N^{-1}3\underbrace{\{\mu\sigma^{2} - \mathbb{E}_{F}(\bar{X}_{N}\hat{\sigma}^{2})\}}_{\mathcal{O}(N^{-1})} + N^{-2}\underbrace{\{\gamma - \mathbb{E}_{F}(\hat{\gamma})\}}_{\mathcal{O}(N^{-1})}$$

Leading Example: Using the $\hat{ heta}^{*b}$ for CI

•
$$X_1, \ldots, X_N \stackrel{\text{i.i.d.}}{\sim} F$$
 and $\theta = \theta(F) = \int x dF$
• $\hat{\theta} = \bar{X}_N$ and $\hat{\sigma}^2 = (N-1)^{-1} \sum_{n=1}^N (X_i - \bar{X}_N)^2$
• we want θ_α such that $P\{\theta \ge \theta_\alpha\} = 1 - \alpha$, for $0 < \alpha < 1$

Exact CI. (rare) Assuming Gaussianity,

$$T = \sqrt{N} \frac{\bar{X}_N - \theta}{\hat{\sigma}} \sim t_{N-1} \quad \Rightarrow \quad P\{T \le t_{N-1}(1-\alpha)\} = 1-\alpha$$

and so we get a CI with exact coverage

$$\theta \geq \bar{X}_N - \frac{\hat{\sigma}}{\sqrt{N}} t_{N-1}(1-\alpha) := \hat{\theta}_\alpha$$

 $\textbf{@ Asymptotic Cl. Assuming only } \mathbb{E}X_1^2 < \infty, \ T \xrightarrow{d} \mathcal{N}(0,1) \text{ and thus }$

$$P\{\theta \geq \hat{\theta}_{\alpha}\} \approx 1-\alpha \quad \text{for} \quad \hat{\theta}_{\alpha} = \bar{X}_N - \frac{\hat{\sigma}}{\sqrt{N}} z(1-\alpha)$$

Linda Mhalla

13/29

Leading Example: Using the $\hat{\theta}^{*b}$ for CI

 $\textcircled{3} \textbf{Bootstrap Cl. Let } \mathbb{E}X_1^2 < \infty \text{ and } X_1^\star, \dots, X_N^\star \text{ be a bootstrap sample from the ECDF } \widehat{F}_N$

• get
$$\overline{X}_N^\star = N^{-1} \sum_{n=1}^N X_n^\star$$
 and $\hat{\sigma}^{\star 2} = \frac{1}{N-1} \sum_{n=1}^N (X_n^\star - \bar{X}_N^\star)^2$

• set up the bootstrap statistic $T^{\star}=\sqrt{N}\frac{\overline{X}_{N}^{\star}-\overline{X}_{N}}{\widehat{\sigma}^{\star}}$

 $\bullet~B$ bootstrap copies $T_1^\star,\ldots,T_B^\star$ used to estimate the dist. of T

 $\begin{array}{ccc} \text{Data} & \text{Resamples} \\ \\ \mathcal{X} = \{X_1, \dots, X_N\} & \Longrightarrow & \begin{cases} & \mathcal{X}_1^\star = \{X_{1,1}^\star, \dots, X_{1,N}^\star\} & \Longrightarrow & T_1^\star \\ & \vdots & & \vdots \\ & \mathcal{X}_B^\star = \{X_{B,1}^\star, \dots, X_{B,N}^\star\} & \Longrightarrow & T_B^\star \end{cases}$

- $\bullet \, {\rm take} \; q^\star(1-\alpha) \; {\rm the \; sample} \; (1-\alpha) {\rm quantile \; of} \; T_1^\star, \ldots, T_B^\star$
- $\bullet~{\rm instead}~{\rm of}~\hat{\theta}_{\alpha}=\bar{X}_N-\frac{\hat{\sigma}}{\sqrt{N}}z(1-\alpha),$ consider

$$\hat{\theta}^{\star}_{\alpha} = \bar{X}_N - \frac{\hat{\sigma}}{\sqrt{N}} q^{\star} (1-\alpha)$$

Leading Example: Coverage Comparison

2 Asymptotic CI.
$$T = \sqrt{N} \frac{\bar{X}_N - \theta}{\hat{\sigma}} \sim \mathcal{N}(0, 1)$$

By the Berry-Esseen theorem

$$\begin{split} P_F(T \leq x) - \Phi(x) &= \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) \quad \text{for all } x \\ \Rightarrow \quad P\Big(\theta \geq \underbrace{\bar{X}_N - \frac{\hat{\sigma}}{\sqrt{N}} z(1-\alpha)}_{=\hat{\theta}_\alpha}\Big) = P\{T \leq z(1-\alpha)\} \\ &= 1 - \alpha + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) \end{split}$$

I.e., the coverage of the asymptotic CI is exact up to $\mathcal{O}(N^{-1/2})$

Leading Example: Coverage Comparison

Bootstrap CI. (assuming "ideal" bootstrap with infinite nbr of replicates)
 From Edgeworth expansions (complicated!):

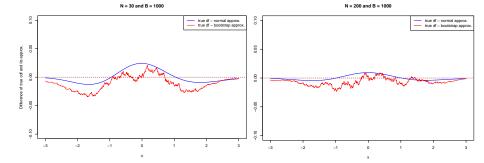
$$\begin{split} P_F(T \leq x) &= \Phi(x) + \frac{1}{\sqrt{N}} a(x) \phi(x) + \mathcal{O}\left(\frac{1}{N}\right) \\ P_{\widehat{F}_N}(T^\star \leq x) &= \Phi(x) + \frac{1}{\sqrt{N}} \hat{a}(x) \phi(x) + \mathcal{O}\left(\frac{1}{N}\right) \end{split}$$

where $\hat{a}(x)-a(x)=\mathcal{O}(N^{-1/2})$ Hence, $P_F(T\leq x)-P_{\widehat{F}_N}(T^\star\leq x)=\mathcal{O}\left(\frac{1}{N}\right)$ and

$$\Rightarrow P\Big(\theta \ge \underbrace{\bar{X}_N - \frac{\hat{\sigma}}{\sqrt{N}} q^*(1-\alpha)}_{=\hat{\theta}^*_{\alpha}}\Big) = P_F\{T^* \le q^*(1-\alpha)\} + \mathcal{O}\left(\frac{1}{N}\right)$$
$$= \mathbf{1} - \alpha + \mathcal{O}\left(\frac{1}{N}\right)$$

I.e. the coverage of the bootstrap CI is exact up to $\mathcal{O}(N^{-1})$: faster conv. rate

Leading Example: Sampling Distribution



17/29

Problem (1) with the non-parametric bootstrap

Use non-parametric bootstrap to estimate characteristics of the **median** For a sample of size N=2m+1, possible distinct values of $\hat{\theta}^\star$ are $X_{(1)}<\cdots< X_{(N)}$, and

$$P\left(\hat{\theta}^{\star} > X_{(l)}\right) = \sum_{r=0}^{m} \left(\begin{array}{c} N \\ r \end{array}\right) \left(\frac{l}{N}\right)^{r} \left(1 - \frac{l}{N}\right)^{N-r}$$

- exact calculations of mean, variance (etc.) of bootstrap distribution are possible and converge to correct values (as $N\to\infty)$

 \Rightarrow consistency holds

- but $\hat{\theta}^{\star}$ concentrated on sample values and very vulnerable to unusual values
- \Rightarrow discreteness makes convergence very slow

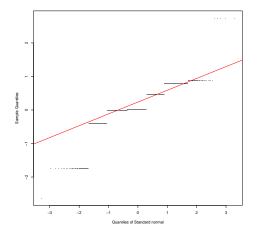
E.g., bootstrap variance of the median can be very poor for heavy-tailed distributions and small sample sizes

Linda Mhalla

Week 9: Bootstrap

Problem (1) with the non-parametric bootstrap

- Simulate from a sample with N = 11 from (standard) Cauchy
- Compute medians from B=1000 bootstrap samples and center with true median (=0)



Problem (2) with the non-parametric bootstrap

•
$$X_1, \dots, X_N \sim U(0, \theta)$$
 i.i.d., $\theta > 0$

MLE:
$$\theta = \max(X_1, \dots, X_N)$$

• $T = N(\theta - \hat{\theta})/\theta \sim Exp(1)$

- \bullet Non-parametric bootstrap: X_1^*,\ldots,X_N^* sampled indep. from X_1,\ldots,X_N with replacement
- Bootstrap estimate $\hat{\theta}^* = \max{(X_1^*, \dots, X_N^*)}$

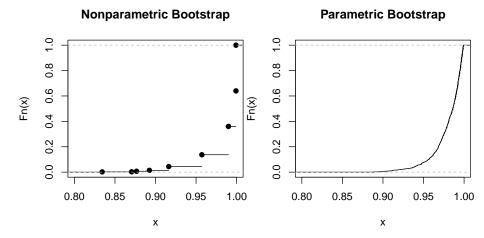
•
$$T^{\star} = N(\hat{\theta} - \hat{\theta}^{*})/\hat{\theta}$$

• Large probability mass at $\hat{\theta}$. In fact $P\left(\hat{\theta}^* = \hat{\theta}\right) = 1 - (1 - 1/N)^N \xrightarrow{N \to \infty} 1 - e^{-1} \approx .632$

 \Rightarrow the limiting distribution of T^{\ast} cannot be Exp(1)

Bootstrap fails here and we will see why (consistency fails!)

Problem (2) with the non-parametric bootstrap



(Non-parametric) Bootstrap: Summary

- $\bullet~$ let $\mathcal{X} = \{X_1, \dots, X_N\}$ be a random sample from F
- quantity of interest: $\theta = \theta(F)$
- (plug-in) estimator: $\hat{\theta}=\theta(\widehat{F}_N)$
 - write $\hat{\theta}=\theta[\mathcal{X}],$ since \widehat{F}_N and thus the estimator depends on the sample
- the distribution $F_{T,N}$ of a scaled estimator $T=g(\hat{\theta},\theta)=g(\theta[\mathcal{X}],\theta)$ is of interest, e.g., $T=\sqrt{N}(\hat{\theta}-\theta)$

(Non-parametric) Bootstrap: Summary

- $\bullet~$ let $\mathcal{X} = \{X_1, \dots, X_N\}$ be a random sample from F
- quantity of interest: $\theta = \theta(F)$
- (plug-in) estimator: $\hat{\theta}=\theta(\widehat{F}_N)$
 - write $\hat{\theta}=\theta[\mathcal{X}],$ since \widehat{F}_N and thus the estimator depends on the sample
- the distribution $F_{T,N}$ of a scaled estimator $T=g(\hat{\theta},\theta)=g(\theta[\mathcal{X}],\theta)$ is of interest, e.g., $T=\sqrt{N}(\hat{\theta}-\theta)$

The workflow of the bootstrap is as follows for some $B \in \mathbb{N}$:

 $\begin{array}{ccc} \mathsf{Data} & \mathsf{Resamples} \\ \\ \mathcal{X} = \{X_1, \dots, X_N\} & \Rightarrow & \left\{ \begin{array}{ccc} \mathcal{X}_1^\star = \{X_{1,1}^\star, \dots, X_{1,N}^\star\} & \Rightarrow & T_1^\star = g(\theta[\mathcal{X}_1^\star], \theta[\mathcal{X}]) \\ & \vdots & & \vdots \\ & \mathcal{X}_B^\star = \{X_{B,1}^\star, \dots, X_{B,N}^\star\} & \Rightarrow & T_B^\star = g(\theta[\mathcal{X}_B^\star], \theta[\mathcal{X}]) \end{array} \right.$

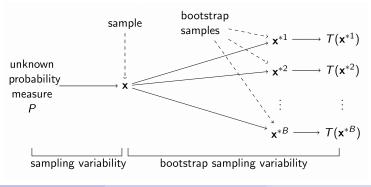
 $F_{T,N}$ now estimated by $\widehat{F}^{\star}_{T,B}(x)=B^{-1}\sum_{b=1}^{B}\mathbb{I}_{[T^{\star}_{b}\leq x]}$

• any characteristic of $F_{T,N}$ can be estimated by the char. of $\widehat{F}^{\star}_{T,B}(x)$

Bootstrap: Summary

Bootstrap combines

- the plug-in principle: sample is used to estimate $F~(pprox \hat{F})$
- Monte Carlo principle: simulation replaces theoretical calculation
- two sources of variability
 - sampling variability (we only have a sample of size N)
 - bootstrap resampling variability (only B bootstrap samples)



- How many bootstraps/Monte Carlo draws?
 - $B \ge 200$ to estimate bias or variance (next week)
 - $B = 10^3$ is taken most commonly
 - $B \geq 10^4~{\rm better}$ for small/large quantiles

- How many bootstraps/Monte Carlo draws?
 - $B \ge 200$ to estimate bias or variance (next week)
 - $B = 10^3$ is taken most commonly
 - $B \geq 10^4~{\rm better}$ for small/large quantiles
- Why take resamples of size N?
 - to mimic sampling properties of samples like the original one
 - sometimes we take m < N to achieve validity of bootstrap, e.g., for extreme quantiles or median (to avoid discreteness)

- How many bootstraps/Monte Carlo draws?
 - $B \ge 200$ to estimate bias or variance (next week)
 - $B = 10^3$ is taken most commonly
 - $B\geq 10^4$ better for small/large quantiles
- Why take resamples of size N?
 - to mimic sampling properties of samples like the original one
 - sometimes we take m < N to achieve validity of bootstrap, e.g., for extreme quantiles or median (to avoid discreteness)
- Why resample from the EDF?
 - Non-parametric MLE of F, so it's natural when no restrictions on F
 - Smooth estimate of the EDF (KDE) can be used when discreteness is severe, e.g. the case of the median

- How many bootstraps/Monte Carlo draws?
 - $B \ge 200$ to estimate bias or variance (next week)
 - $B = 10^3$ is taken most commonly
 - $B \geq 10^4~{\rm better}$ for small/large quantiles
- Why take resamples of size N?
 - to mimic sampling properties of samples like the original one
 - sometimes we take m < N to achieve validity of bootstrap, e.g., for extreme quantiles or median (to avoid discreteness)
- Why resample from the EDF?
 - Non-parametric MLE of F, so it's natural when no restrictions on F
 - Smooth estimate of the EDF (KDE) can be used when discreteness is severe, e.g. the case of the median
- When does the bootstrap work ("work" = consistency)?

Consistency

Bootstrap setup:

- $T=g(X_1,\ldots,X_N\mid F)$ is a scaled estimator with unknown (wanted) distribution $F_{T,N},$ with $g(X_1,\ldots,X_N\mid \cdot)$ continuous
- bootstrap statistic $T^\star = g(X_1^\star, \dots, X_N^\star \mid \hat{F})$ has $F_{T,N}^\star$ also unknown
- \bullet the Monte Carlo proxy $\widehat{F}^{\star}_{T,B}$ is used instead of $F^{\star}_{T,N}$

Glivenko-Cantelli:

$$\sup_{x} \left| \widehat{F}^{\star}_{T,B}(x) - F^{\star}_{T,N}(x) \right| \stackrel{a.s.}{\rightarrow} 0 \quad \text{as} \quad B \rightarrow \infty$$

Question: Under which conditions the bootstrap "works" (gives mathematically correct answers), i.e.,

$$F^{\star}_{T,N} \to F_{T,N}, \quad \text{as } N \to \infty$$

Consistency

 ${\small \bigcirc } \ F_{T,N}$ must converge weakly to some continuous limit $F_{T,\infty}$

$$\int h(t) dF_{T,N}(t) \to \int h(t) dF_{T,\infty}(t) \quad \text{as } n \to \infty \text{ and } \forall h \text{ integrable}$$

 \Rightarrow to ensure that the wanted distribution converges to a non-degenerate limit

the convergence must be uniform

 \Rightarrow to ensure that $F_{T,N}^{\star}$ approaches $F_{T,\infty}$ for all possible sequences of \hat{F} (which changes as N increases)

Then, the bootstrap is consistent, i.e., $\forall t \text{ and } \epsilon > 0$

$$P\{\mid F^{\star}_{T,N}(t)-F_{T,\infty}(t)\mid>\epsilon\}\stackrel{n\to\infty}{\to} 0$$

Remark: second condition fails in the case of the maximum of a uniform!

Conditions that ensure consistency of the bootstrap are guaranteed for smooth transformations of the sample mean

Theorem: Let X_1, \ldots, X_N be i.i.d. s.t. $\mathbb{E}(X_1^2) < \infty$ and $T = h(\bar{X}_N)$, where h is continuously differentiable at $\mu = \mathbb{E}(X_1)$ and such that $h(\mu) \neq 0$. Then

$$\sup_{x} \left| F^{\star}_{T,N}(x) - F_{T,N}(x) \right| \stackrel{a.s.}{\rightarrow} 0 \quad \text{as} \quad N \rightarrow \infty$$

Remarks

- bootstrap should not be used blindly
 - verification via theory
 - and/or via simulations
- folk knowledge
 - $\bullet\,$ typically "works" when T asymptotically normal and data i.i.d.
 - "doesn't work" when working with
 - statistics that do not exist (mean of Cauchy distribution)
 - non-smooth transformations of the sample (sample quantiles): non-parametric bootstrap still valid but may not work well for finite samples /Bootstrap not consistent for order statistics
 - non-i.i.d. regimes (e.g. time series): see block bootstrap or bootstrap in regression settings
- bootstrap replaces analytic calculations (in particular the Delta method), but showing that it actually works requires even deeper analytic calculations
- faster rates can be achieved by bootstrap
 - hard to prove, but often happens, e.g., when working with a skewed distribution

Davison & Hinkley (2009) Bootstrap Methods and their Application Wasserman (2005) All of Nonparametric Statistics Shao & Tu (1995) The Jackknife and Bootstrap Hall (1992) The Bootstrap and Edgeworth Expansion