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Bootstrap: Summary

The (non-parametric) Bootstrap

o let ¥ ={X,,..., Xy} be a random sample from F
@ quantity of interest: 8 = 6(F)
o (plug-in) estimator: 6 = G(Z/T\N)
o write § = 0[], since F'y; and thus the estimator depend on the sample
o the distribution Fi  of a scaled estimator T' = 9(6,60) = g(0]X),0)

is of interest, e.g., T' = \/N(é —0)

The workflow of the bootstrap is as follows for some B € N:

Data Resamples
Xf = (XY .., X4 N} = Ti=g(6lX1],002)

X={X1,.., XN} = { : :
X ={X% 1, Xy} = Tg=g(0l%],00X)

Fr n now estimated by FT g(z) =B Zb i <al

o any characteristic of F' \; can be estimated by the char. of f}B(z)
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Confidence Intervals

We want 0¥ and 6% such that P{0L <0 <0V} =1 -«

o T=+/N(0—0) ~ Fp yfor § €R
o Ty = V/N(@**—0) forb=1,...,B

= (estimate of) F'r v can be used to construct Cl for 6
Asymptotic Cl: g(«) is the a-quantile of the asymptotic distribution of T’

(- 10—al2) j_dlo/2))

Note: q(«) depends on the asymptotic bias and variance that needs to be
estimated (sample/empirical estimates or bootstrap estimates)

E.g. If = E(X,), then g() is the a-quantile of (0, 0?), where
02 = Var(X;) (similar derivation holds for MLEs)

Linda Mhalla Week 10: Bootstrap 2024-11-22 3/34



Confidence Intervals

(Basic) Bootstrap Cl:

Assuming consistency of the bootstrap, the quantiles of Fr y are
estimated by those of the distribution of T

Let ¢j;(cv) be the empirical a-quantile of F\:,*ﬂﬁ, the MC estimate of Fi

(5 _ Cﬁa(l\/—ﬁa/?) - TB%Q))

We hope that properties of 17, ..., T5 mimic effect of sampling from
original model — false in general, but often more nearly true for a pivot

Canonical example: X, ..., Xy rd N(p,0?). Then,

X—pu
E R

is a pivot as it is independant of the underlying (normal) distribution
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Studentized Cls

Exact pivots generally unavailable in non-parametric settings
— use studentized statistic
0—6
T=——+
V1/2

where V' = Var(#) is replaced by a consistent estimate

If quantiles g(«) of T" are known, then
P{O—VY2q(1—a/2) <0< 6—V2a/2)} =1—a

= use bootstrap to estimate the distribution of T’
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Studentized Cls

@ bootstrap sample gives (é*b,Vb*) and hence

g0 — 6
Ty =~
Vi
@ B bootstrap samples give 17, ..., T;

= use 17, ..., T} to estimate distribution of 7" and denote ¢} () the
estimated a-quantile

@ get 1 — « confidence interval
0—V2q(1—af2), 0—V12¢5(a)2)

Note Use of studentized statistic reduces error from O(N~1/2) to
O(N~1): this is what we showed last week for one-sided Cl

= studentization recommended, but requires consistent estimation of V'
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Another Confidence Interval

Percentile ClI:

Use empirical quantiles (order statistics) of 5*1, ,é*b to construct Cl

biBinar: OiBina-ar)
= tends to be too narrow for small N and coverage is exact up to O(N 1)
(same for asymptotic and basic Cls)

Back to Basic (bootstrap):

0 =0 1)a-arzy — O 0= {0(B11)a/2) — 0}
General Comparison

@ Asymptotic, basic, and studentized intervals depend on scale

@ Percentile interval is transformation-invariant and thus does a better job
under skewness (than basic or asymptotic Cl). Often too short though

@ Studentized interval gives best coverage overall but can be sensitive to V.
They are best on transformed scale, where V' is approximately constant
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Example: Antarctic ice shelves data
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Aim: Determine a 90% Cl of the median from the log-transformed areas

of the 17 ice shelves

Linda Mhalla

Week 10: Bootstrap

2024-11-22

8/34



Example: Median

@ Antarctic ice shelves data
@ interested in the median of the log-area of the ice shelves

aa <- read.csv('../data/AAshelves.csv')
# source: Reinhard Furrer's "Statistical Modeling" lecture at UZH
logarea <- log(aal[3]]) # log of ice shelf areas
set.seed(517)
N <- length(logarea) #17
B <- 5000
boot_data <- array(sample(logarea, N*B, replace=TRUE), c(B, N))
meds <- apply(boot_data, 1, median)
hist(logarea, col='gray', main='', border=NA)
rug(logarea, ticksize = .04)
abline(v=median(logarea) ,1lwd=2)
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Example: Median

@ Antarctic ice shelves data
@ interested in the median of the log-area of the ice shelves

— distribution is multimodal due to the small sample size
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Example: Median

Is the sample median asymptotically normal?
0=F11/2) & 0=Fy(1/2)

T = VNG —0) 5 N(0,v)
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Example: Median

Is the sample median asymptotically normal?
0=F11/2) & 0=Fy(1/2)
T = VNG —0) 5 N(0,v)

@ yes, under some conditions

o verifying conditions of a general theorem for M-estimator yields
assumption:

o f(0) # 0 and f continuous on some neighborhood of 6
Say we wish to construct a 90% confidence interval for
Option I:
@ approximate only v using bootstrap and use asymptotic Cl

Option lI:

@ approximate the quantiles of T" or 0 using bootstrap: basic or
percentile Cls
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Example: Median

T* = VN(0* — ) or just T* = 6

Option |: approximate aVar(T™*) using bootstrap

Option Il: approximate the quantiles of T using bootstrap

o KDE on the MC draws of §* can be used to visualize the distribution

hist(logarea, prob=TRUE, col='gray', ylim=c(0,2.), main='', border=NA)
rug(logarea, ticksize = .04)
abline(v=median(logarea) ,lwd=2)
hist(meds, add=T, prob=T, col=rgb(0,0,1,.2), border=NA)
lines(density(meds, adjust=2), col=4, lwd=2)
curve (dnorm(x, median(logarea), sd(meds)), add=T, col=2,lwd=2)
abline(v=c(median(logarea)-gnorm(c(.95,.05), sd = sd(meds))), col=2, lwd=2)
# asymptotic: 9.502293 11.470844
# sd(meds) == sd(sqrt(N)*(meds-median(logarea)))/sqrt(N)
abline(v=c(quantile(meds, c(.05,.95))), col=4, 1lwd=2)
# percentile: 8.870101 10.763525
abline(v=2*median(logarea)-quantile(meds, c(.95,.05)), col=3, 1lwd=2)
# basic: 10.20961 12.10304
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Example: Median

vensity

logarea

What if we wanted a studentized interval?

0—V12¢5(1—a/2), 6—VY2¢5(a/2)
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Variance Estimation

o often VN (0 —0) 4 N,(0,%), but V = N"'X needs to be estimated

The bootstrap estimator of V'Y is easy to obtain:

194 1 o b__p Geb o) | 0 1 & Nxb
Vi = (00 —6%) (60 —06) ,  where 0= _>"
B—1{= b=1

N1 because one should take T* = \/N(ég — ), and estimate & by

1 B
— 14

Ti% * 7*TN - 1 - Nx 0% N* _*T
= 121(Tb—T)(Tb—T) ~ N 13_1;(61)—9)(96—9)

Often, this is an inner step when computing Cls...
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Variance Estimation

Estimation of variance V' = Var(6) is required for certain types of Cls

. . nxb__ 9
E.g., studentized Cl are based on the quantiles of T} = GV*H
b

= V" needed
There are several ways to compute this

o iterated (double) bootstrap
o delta method
@ jacknife
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lterated Bootstrap

Simple bootstrap: B resamples

Data Resamples
Xy ={X7 1, Xi Nt = T =g(0[X1],00X])

X={X,..,. Xy} = : :
I%I{X*B,la'"’X;B,N} = Tg:g(e[x%}vg[x]
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lterated Bootstrap

Double bootstrap: B(C' + 1) resamples

Data Resamples Re-resamples
* %
X1
%
1,C
X = A
*k
B,1
* .
Iy =
*k
B,C
* H % x % x
E.g., V;' is the sample variance of Hb’l, e,
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lterated bootstrap

Why?

o for bias reduction: a j-th iterated bootstrap reduces order of bias
from O(N1) to O(N—U+D)

o for Cls: each iteration reduces the coverage error by factor N~
(one-sided: recall errors of asymptotic and studentized Cls seen last
week) or N~ ! (two-sided)

1/2

Choice of C:

@ The total cost of implementation is proportional to BC'
@ Rule of thumb: C' should be of the same order as v/B: a high degree
of accuracy in the second stage is less important than for the first

stage
@ Often reasonable to take C' = 50 for variance estimation
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Example: Median (continued)

Goal: construct Cl for the median

Option I: approximate only the asymptotic variance v using bootstrap
@ asymptotic

Option II: approximate directly the quantiles of T using bootstrap
@ non-studentized Cl

Option Ill: approximate the quantiles of a studentized statistic using one
bootstrap (requires the knowledge of variance, so get that by using
another bootstrap)

@ studentized ClI
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Example: Median (continued)

set.seed(517)

N <- 17; B <- 5000; C <- 500;

boot_data <- array(sample(logarea, N*B, replace=TRUE), c(B, N))

# Dboot_data <- array(0,c(B,C,N))

# for(b in 1:B){

# Dboot_datalb,,] <- array(sample(boot_datal[b,], N*C, replace=TRUE), c(C, N))
#

# meds <- apply(boot_data, 1, median)

# Dmeds <- apply(Dboot_data, c(1,2), median)

# sds <- apply(Dmeds, 1, sd)

# T_stars <- sqrt(N)*(meds - median(logarea))/sds #studentized statistic
op <- par(ps=20)

hist(logarea, prob=TRUE, col='gray', ylim=c(0,2.), main='"', border=NA)
rug(logarea, ticksize = .04); abline(v=median(logarea),lwd=2)

hist(meds, add=T, prob=T, col=rgb(0,0,1,.2), border=NA)
lines(density(meds, adjust=2), col=4, lwd=2)

curve (dnorm(x, median(logarea), sd(meds)), add=T, col=2,lwd=2)
abline(v=median(logarea)-qnorm(c(.95,.05))*sd(meds), col=2, lwd=2)

### sd(meds) == sd(sqrt(N)*(meds-median(logarea)))/sqrt(N)
abline(v=quantile(meds, c(.05,.95)), col=4, 1lwd=2)
abline(v=2*median(logarea)-quantile(meds,c(.95,.05)),col=3,1lwd=2)

# abline(v=median(logarea)-quantile(T_stars, c(.95,.05))/sqrt(N)*sd(meds), col=3, 1
abline(v=c(9.810801, 11.760838), col=3, lwd=2, lty=2) # studentized CI
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Example: Median (continued)

Q
o

15

Density
1.0

0.0

logarea

Is the studentized Cl actually better? Simulations!
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Delta Method

Computation of variance formulae for functions of averages and other
estimators

Suppose 7 = g(6) estimates 1 = g(f), and 6 ~ N (6,0%/N)
Then under mild conditions and provided g’ (#) # 0, Taylor expansion gives

E($) = g(6) + O (N7)
Var(y) = o%¢'(0)?/N + O (N—3/2)

= Var(z/z) =529/ (0 ) /N=V

2

Example: § = Xy ~ N(u,0%/N) and, ¥ =logh ~ N (log(p), "W%)
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Delta Method for Variance Stabilisation

~

If Var(6) = S(6)?/N (depends on ), find transformation g such that

Var{g(#)} = constant
E.g., Poisson distribution:
o Let Xy,..., Xy e Poisson(\)

- d
CLT says VN (X — A) = T ~ N(0, A)
Delta method says

VN{g (Xy) —g(N)} 5 g (VT =Y ~ N (0,g'(\)2N)

If g/(A\) = %, then Y ~ N(0,1)

S
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Jackknife

@ a predecessor to the bootstrap
e sometimes can achieve a better trade-off between accuracy and
computational costs, but hard to quantify
@ used first for bias correction (Quenouille, 1949), later for variance
estimation (Tukey, 1958)

Consider X, ..., X a random sample from F' depending on § € RP
0 0=0[X,,.., Xy]

o interested in some characteristic of the estimator such as the bias

The jacknife method creates resamples of the original sample by leaving
out one observation each time and computing

Xn+17 ...7XN]

~

e_n == 9[X17 ,_X

n—1

o consider f = N~'3" 6_,

Jackknife estimator of the bias: b = (N — 1)(0 — 0)
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Jackknife Bias - a Heuristic

o assume b = bias(d) = a; N~ + a, N2 + O(N~3) for some constants a,
and a,

bias(6_,) = a; (N — 1)~ + ay(N — 1)72 + O(N—3) = bias(f)

Eb = (N — 1){bias(d) — bias()}
_ (N—l){al (ﬁ—%) +ay ((Nil) N12> +(9<N1 )}

2N —1 .
=a;N ' +a,N2 N1 +O(N2)+O(N3)
N
:b+azN_2m+0(N_2):b+O(N_2)

=b approximates b correctly up to the order N~2, which corresponds to the
bootstrap

= é‘g —0—b=NbO— (N — 1)@ has bias of order N2
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Jackknife Variance

John W. Tukey defined the “pseudo-values”
0, = NO— (N —1)0_,

and conjectured that in some situations these can be treated as i.i.d. with

~

mean 6 and variance N Var(6), and hence we can take

1

n

N
Var(d) = %Nl_ (05— %) (67, — )
=1

@ later shown to actually work (& bootstrap via delta method)

@ could be used instead of the second bootstrap in our double
bootstrap example above .

@ requires N + 1 calculations of 8: cheaper than bootstrap

@ “works” for smooth statistics (mean, variance, moments) but not for
rough statistics (median, maxima, etc)
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Hypothesis Testing

o data Xy,..., Xy
@ hypothesis H, to be tested using a test statistic 7’

@ depending on the form of the alternative H,, evidence against H,, is
o large values of T,
e small values of T, or
o large values of |T|

Assume that large values of 1" give evidence against H,

o t,, = t(Xy,..., Xy) the observed value of T’
@ the p-value

Pobs = PrHO <T > tobs) =Pr (T > tobs ‘ MO)

measures evidence against H,), i.e., small p,,. indicates evidence
against the null

= often hard to calculate as it depends on distribution of 1" under H,,

Linda Mhalla Week 10: Bootstrap 2024-11-22 27 /34



Hypothesis Testing

o Estimate p,,. by simulation from fitted null hypothesis model ]\/4\0

e Algorithm: forb =1, ..., B:

o simulate data set X7, ..., X} from ]\70
o calculate test statistic ¢; = t(X7,..., X})-

@ Calculate bootstrap estimate
2«5 _ # {tz > tobs}
B
of

ﬁobs =Pr (T >t | MO)

obs
@ Simulation and statistical errors:
ﬁ%ﬁobs%pobs:Pr<T2t |MO)

obs
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Example

i.4.d.

Xy n Xy ~ Exp(1/2) and Hy: p=1.78 vs Hy : 4 > 1.78
set.seed(517)

100; B <= 10000

rexp(N,1/2)

1.78 # hypothesized value

(mean (X)-mu_0)/sd(X)*sqrt (N) #asympt. normal under HO
<- rep(0,B)

<- sample(X,N,replace=T)

boot_stat[b] <- (mean(Xb)-mean(X))/sd(Xb)*sqrt (N)

<- rexp(N, rate=1/mu_0)

# boot_stat[b] <- (mean(Xb)-mu_0)/sd(Xb)*sqrt (N)

<- mean(boot_stat >= T_stat)

N <-
X <-
mu_O <-
T_stat <-
boot_stat
for(b in 1:B){
Xb
# Xb
}
p_boot
p_obs_hat

<- 1-pnorm(T_stat)

c(p_obs_hat, p_boot)

[1] 0.05919482 0.03760000
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Example

Hy:p=178vs Hy : p# 1.78
set.seed(517)
N <- 100;B <- 10000
X <- rexp(N,1/2)
mu_O0 <- 1.78 # hypothesized value # reduce to increase power
T_stat <- (mean(X)-mu_0)/sd(X)*sqrt(N) #asympt. normal under HO
boot_stat <- rep(0,B)
for(b in 1:B){
# Xb <- sample(X,N,replace=T)
# boot_stat[b] <- (mean(Xb)-mean(X))/sd(Xb)*sqrt(N)
Xb <- rexp(N, rate=1/mu_0)
boot_stat[b] <- (mean(Xb)-mu_0)/sd(Xb)*sqrt (N)
}
p_boot <- mean(abs(boot_stat) >= T_stat)
p_obs_hat <- 2*(1-pnorm(T_stat))

c(p_obs_hat, p_boot)

[1] 0.1183896 0.1323000
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Example with lterated Bootstrap

e X,,...,Xy €RPiid. from a distribution depending on 6 € R?
e Hy:0=0, against H, : 0 # 6,

~ ~ d
e assume @ satisfies vV N (0 —6) — N(0,%)

@ studentized statistic:

T = VNS V206 5 N(0,1,.)  (under Hy)

) TpXp

o 3 is consistent for ¥
d
e asymptotic test based on: |T'|* — X2 under H,

Bootstrap can be used

@ instead of using the asymptotic distribution to produce a p-value, or
@ when an estimator of X is not available

Both of the above combined = double bootstrap
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Example with lterated Bootstrap

=X Xt
Xf:{Xf,U'“»Xl*,N} :
X = {X1*,*M,1‘ . ..,XffM,N}
X ={Xy,..., Xy}
Xﬁﬁ = {XELM e ’Xfafl,zv}
XE:{XI*M,...,XRN} :
XETM = {XEM,I’ T ’XZ*?TM,N}
where
S 1 A Ok G* Dxx G+ T Orx o x o+
= M_1 Z(eb,m_ b)(ab,m_ b) , where 6077 = [Xb,m] & 6
m=1
s N2
T =VN(Sp) " (65-9),
1 (&
p= (2T = 1T1?) |,
B \i=
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Parametric Bootstrap and GoF Testing

o X, .., Xy~F

o goal: test Hy: F e F ={F, | A€ A} against H, : F ¢ F
o if 7 = {F,}, we could use the KS statistic: sup, ‘F\N(x) — FO(Z'>’

@ plug in principle: use t,,, = sup, ‘F\N(x) — F;\(J:)‘
o where )\ is consistent under H, (e.g. the MLE)
Bootstrap procedure: forb=1,..., B
o generate 1; = {X} ,,..., Xj v}
o this time not by resampling, but by sampling from F5

o estimate A* from Xy
o calculate the EDF F}, , from X'}

—

P (@) = P (@)
@ estimate the p-value by p = # {t} >t} /B

@ set t; =sup,
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Assignment 7 [5 %]

Go to Assignment 7 for details
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