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Section 1




Bayes' Rule

Let X be a random variable and 6 a parameter, considered also a random

variable:

fX,e(l‘vH) = fX\@(l” | 6) fi@ = fe\x(e | z) fx(z).

likelihood ~ Prior posterior

o likelihood = frequentist model (6 fixed)
o likelihood & prior = Bayesian model (# random)
Denoting by x, the observed value of X:
f 0] zy) = fX|9(330 | 0) fo(0) _ fX\e(xo | 0)fo(0)
flX =m0 0 [x(zo) ffX|9<$o | 0) fo(0)do’
which is the Bayes' rule. Rewritten:
f0\X=$O(9 | g) o fX\e(Io | 0)fo(0),

in words: posterior o likelihod X prior

X .. proportional to
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Information update

X =z and/or 6 = (1), \) can even be vectors:
f¢|X:x0 (¥ | mg) ox /fxw(on | ) fo(1h, A)dA

@ our original (prior) information (belief) about 6 was updated by
observing X = z, into the (marginal) posterior

@ this can be applied recursively (when a new Y independent of X
arrives):

fe\x:z,yzy(e | l’oﬁUo) X fY,X|9($0,yo | 0)fo(0)
= fY\@(yO | 6) fX\O(xO 1 6) fo(0),

old posterior

All available information about € is summarized by the posterior (provides
a complete inferential scope)
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Prior Densities

@ the prior distribution quantifies the researcher’s uncertainty about
parameters before observing data

@ choice of the prior density is important: it is based on the best
available information — subjective

@ sometimes use an improper prior, which is not a true density (has
infinite integral) but for which the posterior is a true density

@ often use a non-informative proper prior, which inputs only weak
information (+ ignorance) (e.g., normal density with very large
(finite) variance, Jeffreys prior based on Fisher information matrix, or
uniform prior though not transformation-invariant)

@ conjugate priors make computations easy as they yield a posterior
density of the same family (e.g. beta prior/binomial data — beta
posterior or gamma prior/Poisson data — gamma posterior)

Note: Empirical Bayes can be used to select parameters of the prior
(approximate prior distribution by frequentist methods). Other techniques:
hierarchical Bayes or maximum entropy
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Prior Densities

@ as sample size increases, the effect of the prior is washed out

E.g., Bernoulli case

o likelihood: Pr(x,.y|p) = pZi1 ®i(1 — p)N-Tis i
@ beta prior p ~ Beta(a,b):

Pr(p) o< p* 1 (1 —p)b!

on the interval (0,1)
e posterior: Pr(p|xy,5) o Pr(xy,5|p) Pr(p)

N=10 N=100

iy
00 10 20 30
7
0

Linda Mhalla Week 11: Bayesian Computations 2024-11-29



Prior Densities: Example

o Improper Prior

If 2 ~ N(0,1) and fy(-) = w (constant), then posterior dist. of 6 is

a0 0) = e {2

i.e., corresponds to a N (x, 1) distribution = independent of the prior

e Non-informative (flat) prior

Consider z ~ N (0,1) and 6 ~ N (0, 10)

Fo(®]2) o F(@ | 0)f5(6) o exp {_@—29) _ ;)O}

1162 11 )
X exp (— 50 + 925) X exp [—20{9 — (10x/11)} ]
and

9[x~N<10 10)

o
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The Bayesian Approach

o let us denote the data set D, its realization d, and € the parameter(s)
@ the Bayesian model assumes

e that nature picks 8 from the prior distribution f,

e that nature generates data set D = d from the likelihood fD\e

@ the posterior
O D=d)oc f(d]0)f(0)
provides answers for all statistical tasks
point estimation
interval estimation
prediction
model selection
hypothesis testing? a matter of choosing priors reflecting the
hypotheses
@ Uncertainty:
e How much prior belief about 6 changes in light of data (Bayesian)

e How estimates vary in repeated sampling from the same population
(frequentist)

Linda Mhalla Week 11: Bayesian Computations 2024-11-29 8/35



Point estimation

Goal: a numerical value compatible with the data

Frequentist approach:

e MLE
@ method of moments
@ optimization (e.g. penalized least squares), etc.

Bayesian approach:

@ MAP - Maximum A Posterior estimate

o the maximum of the posterior density (close to frequentist MLE)

@ posterior mean - the expected value of the posterior
@ posterior median

@ generally: minimizing the expected loss
e the expectation is calculated under the posterior
e e.g., for the squared error loss L(0,a) = (§ — a)?, the posterior
expected loss f@(H — a)2dF9|D(9) is minimized at the mean of the
posterior distribution; |# — a| yields the posterior median
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Point Estimation

~0.20 ~016 012 ~0.08

age
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Interval Estimation

Goal: a range of values 0 compatible with the data

Frequentist approach: a confidence interval CI;_,,

@ dual to significance testing
@ the probability that the interval contains the true parameter under
replication of the datais 1 — «

Bayesian approach: a credible set CR;_,

@ a subset of © such that P(0 € CR,_,|D)=1—«
e probability calculated under the posterior

@ simple interpretation: given the model and data, the probability that
the true parameter is in the credible set is 1 — «

@ Infinitely many such intervals/regions

@ many options (just as in the frequentist context), most used:
equal-tailed interval and the highest posterior density set (narrowest
possible)
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Interval Estimation: Equal-tailed Interval

© ORy_, = [du/2,q1-a 2] Where g, is the a-quantile of the posterior
distribution fyp

,,,,,,,

@ credible interval influenced by the prior

@ credible interval gets narrower with increasing N

@ may include values with lower probability than those excluded, unless
the posterior is unimodal and symmetric
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Interval Estimation: Highest Posterior Density Set

° fop(0 | d)dd =1 — o such that

fop(01d) > fop(0"|d)
foral@ e CR,_, and 0’ ¢ CR,_,,

onCR,

-0.20 -0.16 -0.12 -0.08
age

@ not necessarily an interval: if the posterior is multimodal, the HPD set may

be an union of distinct intervals (or distinct contiguous regions)
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Interval Estimation:

density

Equal-tailed 95% CR

Bimodal Example

95% HPD CR
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Interval Estimation: Example

@ Data X; | p,7 ~ N (u,77%),i=1,...,N. Suppose T is known, and that
we use prior p ~ N (pg, 7o ') for some fixed values of y and 74 > 0

@ The corresponding posterior distribution of y is

M‘xNN(“p’Tp_l)

where 7, = N7 + 7 and p1,, = —2% :E—i—TOI“NTuO

p To+NT
Hence, 95% credible interval (in this case also 95% HPD region):

[Hp — 20.0250p> Hp T 204025%]

=> a priori information about a parameter decreases our (posterior) uncertainty
about it

Note that the credible interval corresponding to the noninformative prior

[j — 200250/ VN, T + 20.0250/\/N]

coincides with the classical (frequentist) confidence interval
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Prediction of Future Observations

Goal: posterior prediction, i.e., evaluating or sampling from the posterior
predictive distribution fle, where D is observed data and D is yet to be

observed data

Bayesian approach: prediction = estimation

@ assume that likelihood satisfies f, plo = Ipje - fb\o' i.e., new and old

data are independent given parameters
@ then

fe,D,[) = fD\D,G ) ff),e = fD\@ : fD|9 o
= fb,f”[)' f})

@ joint posterior: f, pp = fb\e * foip = marginalize out ¢

Fop(d] d) = /@ Foold 10) - fyp(0 ] d)do

— estimated by MC if we can draw from posterior fy p
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Model Selection

Consider a discrete set M of candidate models indexed by M (a parameter)
Goal: decide which candidate model fits best the data

E.g., M can be a mixture of K Gaussians (K is discrete random variable)
Frequentist approach: hypothesis testing, e.g., LRT

Bayesian approach: model selection = estimation (again)

@ the data generation process is assumed to have additional level

o the nature generates a model M € M based on a prior f;,
o then it generates ¢ conditionally on the model from fy,

o finally the data are generated conditionally on the model and
parameters from fp 5/ 9

@ calculate the posterior (now hierarchical):

Ipom = fD\G,M “fom = fD\G,J\/I : f9|M S

= fomip I
posterior: fo rrip X fpjo,nm + fopn - fu .. marginalize out 6 again
@ select the MAP model
Linda Mhalla
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Example: Bayesian Ridge

Consider a Gaussian linear model Y = X3 + € with € ~ N (0,021, v)-
Consider the following priors:

e [~ N(O,T2Ipxp)
o 72 is a hyperparameter - either fixed or with some hyperprior f, -

e f 2 ox1/0? (improper prior)

Then the posterior for § = (3,02, 7%)7 is given by

I 1 yvexpvexp 1 —1 g5l
f@‘x&/(ﬁ, 0'2,’7'2 | X,Y) X O_iNe 202< B)'( ﬂ>776 27_2,3 6;f7—2(7—2>

Interestingly, the log-posterior for 3 is

log (51X, Y,0%,72) oc 5 5 (V = X3) (Y = X5) — 55676

so MAP here gives the ridge estimator for A = 02 /72
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Computational Difficulty

The Bayesian approach above is

@ conceptually straightforward and holistic, but

@ in practice requires computationally demanding integration
e the normalization constant
e marginalization
e calculating expectations

Possible solutions:

@ analytic approximations to the posterior (e.g., Laplace)
@ Monte Carlo

e but the MC techniques we saw already are useful mostly in
low-dimensional problems

e Markov Chain Monte Carlo (MCMC): explore the space in a dependent
way, focusing on the important regions
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Section 2




MC versus MCMC

Goal: calculate Eg(X) for some function g and random variable X

Monte Carlo (MC):

@ draw independently X, ..., Xy ~ X

e approximate Eg(X) empirically by N~' 3~ g(X,,)
o works due to LLN

Markov Chain Monte Carlo (MCMC):

o draw X X2 . XT) as an ergodic Markov Chain on a state
space X with stationary distribution equal to that of X
e approximate Eg(X) empirically by 7! D g(X)

e works due to the ergodic theorem (LLN for Markov sequences)

]. a.s.
729X T Ee(X),

for any bounded function g : ' — R
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Markov Chains

Definition (informal): A sequence of random variables {X®},. with
values in X' C RP such that

X (t+1) ‘ X xt=1)  x0)  xt+) | x (@)
is called a discrete-time Markov chain

o the conditional distribution X(**1) | X(*) is given by the transition
kernel k(x,y)
o for X(Y) = z, the cond. density of X**V) is k_(y) := k(z,y)
e k has to meet some conditions on measurability and integrability
e a Markov chain is fully determined by the transition kernel!
@ a distribution f is called the stationary distribution of a Markov chain
associated with a transition kernel k if

[ M s@ids = 1t
X

If fri1(y) = [ k(x,y)f,(z)dz = f.(y), then we stay in the
dlstrlbutlon f; forever
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Detailed Balance

Claim: If the following detailed balance condition holds

k(z,y)f(x) = k(y, ) f(y)

for a distribution f and a transition kernel k, then f is a stationary
distribution of the MC associated with k

@ k specifies the amount of flow between the points in the domain X

@ detailed balance: the forward flow x ~~ y is equal to the backward
flow y ~~ x

@ equilibrium distribution is preserved: if x ~ f before a transition, then
this is also true afterwards

@ let f, denote the marginal distribution of X®

fo is the initial distribution

the update f;, ~ f,, is governed by k

no update < f, is the stationary distribution f

if fo = f, there will never be an update .. f, = f for all ¢
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Ergodicity

Definitions:

@ A chain verifying the detailed balance condition (time-reversibility) is
called invariant

@ A chain is called irreducible if any point can be reached (using the
kernel) starting from anywhere else

Vu,pe X, Ftst. P(XH =u| X =v)>0

Result: An irreducible and aperiodic Markov chain converges to a unique
distribution, called stationary distribution

@ An irreducible, aperiodic, and invariant chain is called ergodic

Theorem: If a chain is ergodic then its unique stationary distribution is
the invariant distribution and f, — f for ¢ — oo regardless of f,
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Running Monte Carlo via Markov Chains

Goal: For an arbitrary starting value X9, construct a chain with a
pre-specified stationary distribution f, typically the posterior fyp_g

e chain = function that generates X(**1) depending on X*)
o the transition kernel k is in the background

o produce a dependent sample X(70), X(To+1) . marginally generated
from f, sufficient for most approximation purposes

MCMC is more widely applicable than MC, but what about mixing?

@ we initialize our chain from f, # f

o because if we could draw from f, we would be doing MC instead
e need to ensure irreducibility

o after a while f1. ~ f so we have our first draw XTo) ~ f

o discard X© ..., X(To=1) and continue the chain (now stationary)
e need to ensure invariance (detailed-balance)

Problem: How to build a Markov chain with a given stationary
distribution? We will see some recipes
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Metropolis—Hastings

Idea: construct a candidate new value y by drawing from arbitrary
conditional density ¢(y | ) (called proposal distribution)

@ detailed balance requires the right amount of flow between all
x,ye X

o if there is too much flow x ~~ y, re-map some part of it as = ~~» =
Metropolis—Hastings (MH) algorithm:
@ Input: a proposal density q(y | =), the target f (up to a constant)

o fort =1,2,..., update X~ to X®*) py
o generate UM ~ ¢(- | X(t1))

o define
)g(XE1 | U®)
a(X ,UW) mln{l ( ) (U | X
o set X := U® with probability a(X! ,U(t))
° otherW|se set X(t) .= x(t=1)

(if the proposal is symmetric, g vanishes from the formula above)
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MH: Convergence Properties

o MH Markov Chain satisfies the detailed balance condition with
bl =aey)aly| o)+ [{1-al@&)a(¢ | 2)des, v

where ¢ is the Dirac mass
e If g(y | z) > 0, Yz, y, then the chain is irreducible

o If
FUD)g( XD | U®)
P(f(X“”) OO [ XED) = 1) <t

that is the event { X1 = X1 is possible, then the chain is
aperiodic

Thus, under the above two conditions, we have

Jim Zg ") = [gds)

for £;[g(X)| < o0
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MH with Random Walk

@ use a local perturbation as proposal
Ul = x4 ¢

where €, ~ g, independent of X (1)
@ proposal ¢ is a symmetric (around 0) density of the form g(u — z)
o eg., gis N(0,02) hence UM ~ N (X1 52)
o eg., gis U[—6,8] hence UV ~ U[XTV) — 5, X1 4 4]

@ then, ®)
(o )
(XD U®)) = min (1, f(X(t—U)>
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MH with Random Walk
Verifying detailed balance is relatively simple in this case:

e detailed balance: k(z,u)f(x) = k(u,z)f(u) for z ~ u
e k(x,u) is given implicitly as the mixture of
o moving away z ~ u with probability a(z,u) = min {1, f(u)/f(z)}
e wu is drawn from g(u | ) a symmetric density around x
e equal to
k(z,u) = a(z,u)g(u | z) = a(z,u)g(u — ) = a(z, u)g(x — u)
e staying at x with probability 1 — a(x, u)
@ i.e., x = u ... detailed balance trivially satisfied
o detailed balance: gluAtT]a(z,u)f(x) = gletuja(u,z)f(u)

e this is trivial since for f(x) # f( ) it is

o either a(u,z) =1 and a(z,u) (u)/f(x) leading to
F @) = fa)

e or the other way around
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MH Remarks

@ f is usually a posterior, evaluations needed up to normalization
@ MH similar in flavor to rejection sampling (RS) in MC
e but RS needs a majorizing proposal g to decide accept vs. reject
o MCMC instead moves vs. stays = no majorization needed

@ never moves to values with f(y) =0
@ the chain (X<t)) may take the same value several times in a row,
even when f is a density wrt Lebesgue measure

Def.: acceptance rate for MH is the average acceptance probability
1 Z
Y= lim — X =1 )
&= i 2, (XU

e if a too large, we are probably not exploring the space, mostly staying
close with our proposals to where we already were

o if a too small, we have a lot of repeated values in our sample and
hence the effective sample size is small even for large T’

@ good rates: 25% (large dimension) - 50% (small dimension)
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MH: Summary

... which satisfies detailed

balance condition for p(x)

If Markov
Chain is a-
periodic and
irreducable
it...

Linda Mhalla

induces

Metropolis Hastings

Markov chain Algorithm

converges to samples from

Equilibrium is e

... an aperiodic and irreducable

credit: Marcel Liithi,University of Basel
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Example: MH with Random Walk
Consider the MH algorithm with
@ a Gaussian mixture target model
fisigio?.02,-(8) =70, 2(x) + (1 —T)p,, -2(2)
with uy = 1,4y = 5,0, =09 =1and 7 =0.7

Target density: mixture of two Gaussians

vensity
0.20

0.10

0.00

5 0 5 10

@ a Gaussian random walk proposal y ~ N (x,0?), with o = 0.1, 3, 80
o 20 =—-10
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Example: MH with Random Walk

Sampled chain for 6=0.1 leads to @=0.97 KDE based on the sampled chain KDE with only observations 1-6000 used
<
o 51
S
o 3
E §a ga
g 3 g°
8 3
E 8 2
0 2 3
o 2000 4000 6000 8000 10000 -10 -5 o 5 -10 -8 -6 -4 -2 o 2
N=10000 Bandwidth = 0.4052 N=6000 Bandwidth = 0.1594

= proposals often accepted but chain moves too slowly

Sampled chain for =80 leads to @=0.03 KDE based on the sampled chain KDE with only observations 1-6000 used
g S
g
e g
w K °
? EX) o=
o £35 2
T 3 =Y
E S B
b
ki Iy 8
g B
El 8l — — 8 — —
) 3 3
o 2000 4000 6000 8000 10000 -10 -5 0 5 10 -10 -5 0 5 10
t N =10000 Bandwidth = 0.3675 N=6000 Bandwidth = 0.4049

= chain gets stuck for too long
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Example: MH with Random Walk

Sampled chain for 0=3 leads to @=0.5 KDE based on the sampled chain KDE with only observations 1-6000 used
g S
w - q
a S
go z3 gs
H § 5
E 8 g Bg
7 0 w0
S S
s 8 ] —
) 3 3
o 2000 4000 6000 8000 10000 -10 5 0 5 -10 -5 0 5
N =10000 Bandwidth = 0.361 N=6000 Bandwidth = 0.3983

= seems the best
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