Week 11: Bayesian Computations

MATH-517 Statistical Computation and Visualization

Linda Mhalla

2024-11-29

Section 1

Bayesian Inference

Bayes' Rule

Let X be a random variable and θ a parameter, considered also a random variable:

$$f_{X,\theta}(x,\theta) = \underbrace{f_{X\mid\theta}(x\mid\theta)}_{\text{likelihood}} \underbrace{f_{\theta}(\theta)}_{\text{prior}} = \underbrace{f_{\theta\mid X}(\theta\mid x)}_{\text{posterior}} f_X(x).$$

- likelihood = frequentist model (θ fixed)
- likelihood & prior = Bayesian model $(\theta \text{ random})$

Denoting by x_0 the observed value of X:

$$f_{\theta\mid X=x_0}(\theta\mid x_0) = \frac{f_{X\mid \theta}(x_0\mid \theta)f_{\theta}(\theta)}{f_{X}(x_0)} = \frac{f_{X\mid \theta}(x_0\mid \theta)f_{\theta}(\theta)}{\int f_{X\mid \theta}(x_0\mid \theta)f_{\theta}(\theta)d\theta},$$

which is the Bayes' rule. Rewritten:

$$f_{\theta\mid X=x_0}(\theta\mid x_0)\propto f_{X\mid \theta}(x_0\mid \theta)f_{\theta}(\theta),$$

in words:

posterior \propto likelihod \times prior

 \propto ... proportional to

Information update

 $X=x_0$ and/or $\theta=(\psi,\lambda)$ can even be vectors:

$$f_{\psi\mid X=x_0}(\psi\mid x_0) \propto \int f_{X\mid \theta}(x_0\mid \theta) f_{\theta}(\psi,\lambda) d\lambda$$

- our original (prior) information (belief) about θ was updated by observing $X = x_0$ into the (marginal) posterior
- ullet this can be applied recursively (when a new Y independent of X arrives):

$$\begin{split} f_{\theta\mid X=x,Y=y}(\theta\mid x_0,y_0) &\propto f_{Y,X\mid \theta}(x_0,y_0\mid \theta) f_{\theta}(\theta) \\ &= f_{Y\mid \theta}(y_0\mid \theta) \underbrace{f_{X\mid \theta}(x_0\mid \theta) f_{\theta}(\theta)}_{\text{old posterior}}, \end{split}$$

All available information about θ is summarized by the posterior (provides a complete inferential scope)

Week 11: Bayesian Computations

4/35

Prior Densities

- the prior distribution quantifies the researcher's uncertainty about parameters before observing data
- choice of the prior density is important: it is based on the best available information → subjective
- sometimes use an **improper** prior, which is not a true density (has infinite integral) but for which the posterior is a true density
- often use a non-informative proper prior, which inputs only weak
 information (≠ ignorance) (e.g., normal density with very large
 (finite) variance, Jeffreys prior based on Fisher information matrix, or
 uniform prior though not transformation-invariant)
- conjugate priors make computations easy as they yield a posterior density of the same family (e.g. beta prior/binomial data → beta posterior or gamma prior/Poisson data → gamma posterior)

Note: Empirical Bayes can be used to select parameters of the prior (approximate prior distribution by frequentist methods). Other techniques: hierarchical Bayes or maximum entropy

Prior Densities

as sample size increases, the effect of the prior is washed out

E.g., Bernoulli case

- \bullet likelihood: $\Pr(\mathbf{x}_{1:N}|p) = p^{\sum_{i=1}^N x_i} (1-p)^{N-\sum_{i=1}^N x_i}$
- beta prior $p \sim \text{Beta}(a, b)$:

$$\Pr(p) \propto p^{a-1} (1-p)^{b-1}$$

on the interval (0,1)

• posterior: $\Pr(p|\mathbf{x}_{1:N}) \propto \Pr(\mathbf{x}_{1:N}|p) \Pr(p)$

Prior Densities: Example

Improper Prior

If $x \sim \mathcal{N}(\theta, 1)$ and $f_{\theta}(\cdot) \equiv \omega$ (constant), then posterior dist. of θ is

$$f_{\theta \mid x}(\theta \mid x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-\theta)^2}{2}\right\},$$

i.e., corresponds to a $\mathcal{N}(x,1)$ distribution \Rightarrow independent of the prior

Non-informative (flat) prior

Consider $x \sim \mathcal{N}(\theta, 1)$ and $\theta \sim \mathcal{N}(0, 10)$

$$\begin{split} f_{\theta|x}(\theta\mid x) &\propto f(x\mid \theta) f_{\theta}(\theta) \propto \exp\left\{-\frac{(x-\theta)^2}{2} - \frac{\theta^2}{20}\right\} \\ &\propto \exp\left(-\frac{11\theta^2}{20} + \theta x\right) \propto \exp\left[-\frac{11}{20}\{\theta - (10x/11)\}^2\right] \end{split}$$

and

$$\theta \mid x \sim \mathcal{N}\left(\frac{10}{11}x, \frac{10}{11}\right)$$

The Bayesian Approach

- ullet let us denote the data set D, its realization d, and heta the parameter(s)
- the Bayesian model assumes
 - \bullet that nature picks θ from the prior distribution f_θ
 - ullet that nature generates data set D=d from the likelihood $f_{D| heta}$
- the posterior

$$f(\theta \mid D = d) \propto f(d \mid \theta) f(\theta)$$

provides answers for all statistical tasks

- point estimation
- interval estimation
- prediction
- model selection
- hypothesis testing? a matter of choosing priors reflecting the hypotheses

• Uncertainty:

- ullet How much prior belief about heta changes in light of data (Bayesian)
- How estimates vary in repeated sampling from the same population (frequentist)

Point estimation

 $\textbf{Goal} \colon \text{a numerical value } \widehat{\theta} \text{ compatible with the data}$

Frequentist approach:

- MLE
- method of moments
- optimization (e.g. penalized least squares), etc.

Bayesian approach:

- MAP Maximum A Posterior estimate
 - the maximum of the posterior density (close to frequentist MLE)
- posterior mean the expected value of the posterior
- posterior median
- generally: minimizing the expected loss
 - the expectation is calculated under the posterior
 - e.g., for the squared error loss $L(\theta,a)=(\theta-a)^2$, the posterior expected loss $\int_{\Theta}(\theta-a)^2dF_{\theta|D}(\theta)$ is minimized at the mean of the posterior distribution; $|\theta-a|$ yields the posterior median

Point Estimation

Interval Estimation

Goal: a range of values $\hat{\theta}$ compatible with the data

Frequentist approach: a confidence interval $CI_{1-\alpha}$

- dual to significance testing
- \bullet the probability that the interval contains the true parameter under replication of the data is $1-\alpha$

Bayesian approach: a credible set $CR_{1-\alpha}$

- a subset of Θ such that $P(\theta \in CR_{1-\alpha} \mid D) = 1 \alpha$
 - probability calculated under the posterior
- \bullet simple interpretation: given the model and data, the probability that the true parameter is in the credible set is $1-\alpha$
- Infinitely many such intervals/regions
- many options (just as in the frequentist context), most used: equal-tailed interval and the highest posterior density set (narrowest possible)

Interval Estimation: Equal-tailed Interval

• $CR_{1-\alpha}=[q_{\alpha/2},q_{1-\alpha/2}]$ where q_{α} is the α -quantile of the posterior distribution $f_{\theta|D}$

- credible interval influenced by the prior
- ullet credible interval gets narrower with increasing N
- may include values with lower probability than those excluded, unless the posterior is unimodal and symmetric

Interval Estimation: Highest Posterior Density Set

• $\int_{\Theta\cap CR_{+}} f_{\theta\mid D}(\theta\mid d)d\theta=1-\alpha$ such that

$$f_{\theta|D}(\theta \mid d) \ge f_{\theta|D}(\theta' \mid d)$$

for all $\theta \in CR_{1-\alpha}$ and $\theta' \notin CR_{1-\alpha}$

 not necessarily an interval: if the posterior is multimodal, the HPD set may be an union of distinct intervals (or distinct contiguous regions)

Linda Mhalla Week 11: Bayesian Computations

Interval Estimation: Bimodal Example

Interval Estimation: Example

- Data $X_i \mid \mu, \tau \sim N\left(\mu, \tau^{-1}\right), i=1,\ldots,N.$ Suppose τ is known, and that we use prior $\mu \sim N\left(\mu_0, \tau_0^{-1}\right)$ for some fixed values of μ_0 and $\tau_0 \geq 0$
- ullet The corresponding posterior distribution of μ is

$$\mu\mid x\sim N\left(\mu_p,\tau_p^{-1}\right)$$

where
$$\tau_p=N\tau+\tau_0$$
 and $\mu_p=\frac{N\tau}{\tau_0+N\tau}\bar{x}+\frac{\tau_0}{\tau_0+N\tau}\mu_0$

Hence, 95% credible interval (in this case also 95% HPD region):

$$\left[\mu_p-z_{0.025}\sigma_p,\mu_p+z_{0.025}\sigma_p\right]$$

 \Rightarrow a priori information about a parameter decreases our (posterior) uncertainty about it

Note that the credible interval corresponding to the noninformative prior $\left[\bar{x}-z_{0.025}\sigma/\sqrt{N},\bar{x}+z_{0.025}\sigma/\sqrt{N}\right]$

coincides with the classical (frequentist) confidence interval

Prediction of Future Observations

 $\textbf{Goal} \text{: posterior prediction, i.e., evaluating or sampling from the posterior predictive distribution } f_{\tilde{D}|D}, \text{ where } D \text{ is observed data and } \tilde{D} \text{ is yet to be observed data }$

Bayesian approach: prediction = estimation

- \bullet assume that likelihood satisfies $f_{D,\tilde{D}|\theta}=f_{D|\theta}\cdot f_{\tilde{D}|\theta},$ i.e., new and old data are independent given parameters
- then

$$\begin{split} f_{\theta,D,\tilde{D}} &= f_{D|\tilde{D},\theta} \cdot f_{\tilde{D},\theta} = f_{D|\theta} \cdot f_{\tilde{D}|\theta} \cdot f_{\theta} \\ &= f_{\theta,\tilde{D}|D} \cdot f_{D} \end{split}$$

• joint posterior: $f_{\theta,\tilde{D}|D} = f_{\tilde{D}|\theta} \cdot f_{\theta|D} \Rightarrow$ marginalize out θ

$$f_{\tilde{D}\mid D}(\tilde{d}\mid d) = \int_{\Theta} f_{\tilde{D}\mid \theta}(\tilde{d}\mid \theta) \cdot f_{\theta\mid D}(\theta\mid d) \,\mathrm{d}\theta$$

 \rightarrow estimated by MC if we can draw from posterior $f_{\theta|D}$

Linda Mhalla

Model Selection

Consider a discrete set ${\mathcal M}$ of candidate models indexed by M (a parameter)

Goal: decide which candidate model fits best the data

E.g., $\mathcal M$ can be a mixture of K Gaussians (K is discrete random variable)

Frequentist approach: hypothesis testing, e.g., LRT

Bayesian approach: model selection = estimation (again)

- the data generation process is assumed to have additional level
 - \bullet the nature generates a model $M\in\mathcal{M}$ based on a prior f_M
 - \bullet then it generates θ conditionally on the model from $f_{\theta|M}$
 - finally the data are generated conditionally on the model and parameters from $f_{D|M,\theta}$
- calculate the posterior (now hierarchical):

$$f_{D,\theta,M} = f_{D|\theta,M} \cdot f_{\theta,M} = f_{D|\theta,M} \cdot f_{\theta|M} \cdot f_{M}$$
$$= f_{\theta,M|D} \cdot f_{D}$$

posterior: $f_{\theta,M|D} \propto f_{D|\theta,M} \cdot f_{\theta|M} \cdot f_{M}$

... marginalize out heta again

select the MAP model

Example: Bayesian Ridge

Consider a Gaussian linear model $Y=\mathbf{X}\beta+\epsilon$ with $\epsilon\sim\mathcal{N}(0,\sigma^2I_{N\times N}).$ Consider the following priors:

- $\bullet \ \beta \sim \mathcal{N}(0, \tau^2 I_{p \times p})$
 - \bullet $\,\tau^2$ is a hyperparameter either fixed or with some hyperprior f_{τ^2}
- ullet $f_{\sigma^2} \propto 1/\sigma^2$ (improper prior)

Then the posterior for $\theta = (\beta, \sigma^2, \tau^2)^\top$ is given by

$$f_{\theta\mid\mathbf{X},Y}(\beta,\sigma^2,\tau^2\mid\mathbf{X},Y) \propto \frac{1}{\sigma^N} e^{-\frac{1}{2\sigma^2}(Y-\mathbf{X}\beta)^{\top}(Y-\mathbf{X}\beta)} \frac{1}{\tau^p} e^{-\frac{1}{2\tau^2}\beta^{\top}\beta} \frac{1}{\sigma^2} f_{\tau^2}(\tau^2)$$

Interestingly, the log-posterior for β is

$$\log f_{\dots}(\boldsymbol{\beta} \mid \mathbf{X}, \boldsymbol{Y}, \sigma^2, \tau^2) \propto -\frac{1}{2\sigma^2} (\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta})^\top (\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}) - \frac{1}{2\tau^2} \boldsymbol{\beta}^\top \boldsymbol{\beta}$$

so MAP here gives the ridge estimator for $\lambda = \sigma^2/\tau^2$

Linda Mhalla Week 11: Bayesian Computations

Computational Difficulty

The Bayesian approach above is

- conceptually straightforward and holistic, but
- in practice requires computationally demanding integration
 - the normalization constant
 - marginalization
 - calculating expectations

Possible solutions:

- analytic approximations to the posterior (e.g., Laplace)
- Monte Carlo
 - but the MC techniques we saw already are useful mostly in low-dimensional problems
 - Markov Chain Monte Carlo (MCMC): explore the space in a dependent way, focusing on the important regions

Section 2

Markov Chain Monte Carlo (MCMC)

MC versus MCMC

Goal: calculate $\mathbb{E}g(X)$ for some function g and random variable X

Monte Carlo (MC):

- $\bullet \ \, \text{draw independently} \,\, X_1, \ldots, X_N \overset{\mathbb{L}}{\sim} X$
- \bullet approximate $\mathbb{E} g(X)$ empirically by $N^{-1} \sum_n g(X_n)$
 - works due to LLN

Markov Chain Monte Carlo (MCMC):

- draw $X^{(1)}, X^{(2)}, \dots, X^{(T)}$ as an *ergodic* Markov Chain on a state space $\mathcal X$ with *stationary distribution* equal to that of X
- \bullet approximate $\mathbb{E} g(X)$ empirically by $T^{-1} \sum_t g(X^{(t)})$
 - works due to the ergodic theorem (LLN for Markov sequences)

$$\frac{1}{T} \sum_t g(X_t) \overset{\mathrm{a.s.}}{\underset{T \to \infty}{\longrightarrow}} \mathbb{E} g(X),$$

for any bounded function $g:\mathcal{X}\to\mathbb{R}$

Linda Mhalla

Markov Chains

Definition (informal): A sequence of random variables $\{X^{(t)}\}_{t\geq 0}$ with values in $\mathcal{X}\subset\mathbb{R}^p$ such that

$$X^{(t+1)} \mid X^{(t)}, X^{(t-1)}, \dots, X^{(0)} \sim X^{(t+1)} \mid X^{(t)}$$

is called a discrete-time Markov chain

- \bullet the conditional distribution $X^{(t+1)}\mid X^{(t)}$ is given by the transition kernel k(x,y)
 - ullet for $X^{(t)}=x$, the cond. density of $X^{(t+1)}$ is $k_x(y):=k(x,y)$
 - $\bullet\ k$ has to meet some conditions on measurability and integrability
 - a Markov chain is fully determined by the transition kernel!
- ullet a distribution f is called the stationary distribution of a Markov chain associated with a transition kernel k if

$$\int_{\mathcal{X}} k(x, y) f(x) dx = f(y)$$

If $f_{t+1}(y) = \int k(x,y) f_t(x) dx = f_t(y)$, then we stay in the distribution f_t forever

Detailed Balance

Claim: If the following *detailed balance condition* holds

$$k(x,y)f(x) = k(y,x)f(y)$$

for a distribution f and a transition kernel k, then f is **a** stationary distribution of the MC associated with k

- ullet k specifies the amount of flow between the points in the domain ${\mathcal X}$
- \bullet detailed balance: the forward flow $x \leadsto y$ is equal to the backward flow $y \leadsto x$
- \bullet equilibrium distribution is preserved: if $x\sim f$ before a transition, then this is also true afterwards
- ullet let f_t denote the marginal distribution of $X^{(t)}$
 - ullet f_0 is the initial distribution
 - the update $f_t \leadsto f_{t+1}$ is governed by k
 - no update $\Leftrightarrow f_t$ is the stationary distribution f
 - if $f_0 = f$, there will never be an update ... $f_t = f$ for all t

Ergodicity

Definitions:

- A chain verifying the detailed balance condition (time-reversibility) is called *invariant*
- A chain is called *irreducible* if any point can be reached (using the kernel) starting from anywhere else

$$\forall u,v \in \mathcal{X}, \quad \exists \ t \ \text{s.t.} \ P(X^{(t)}=u \mid X^{(0)}=v) > 0$$

Result: An irreducible and aperiodic Markov chain converges to a unique distribution, called stationary distribution

• An irreducible, aperiodic, and invariant chain is called ergodic

Theorem: If a chain is ergodic then its unique stationary distribution is the invariant distribution and $f_t \to f$ for $t \to \infty$ regardless of f_0

Running Monte Carlo via Markov Chains

Goal: For an arbitrary starting value $X^{(0)}$, construct a chain with a pre-specified stationary distribution f, typically the posterior $f_{\theta|D=d}$

- \bullet chain = function that generates $X^{(t+1)}$ depending on $X^{(t)}$
 - ullet the transition kernel k is in the background
- produce a dependent sample $X^{(T_0)}, X^{(T_0+1)}, ...$, marginally generated from f, sufficient for most approximation purposes

MCMC is more widely applicable than MC, but what about mixing?

- \bullet we initialize our chain from $f_0 \neq f$
 - \bullet because if we could draw from f, we would be doing MC instead
 - need to ensure irreducibility
- \bullet after a while $f_{T_0} \approx f$ so we have our first draw $X^{(T_0)} \stackrel{.}{\sim} f$
 - ullet discard $X^{(0)},\ldots,X^{(T_0-1)}$ and continue the chain (now stationary)
 - need to ensure invariance (detailed-balance)

Problem: How to build a Markov chain with a given stationary distribution? We will see some recipes

Metropolis-Hastings

Idea: construct a candidate new value y by drawing from arbitrary conditional density $q(y \mid x)$ (called *proposal* distribution)

- \bullet detailed balance requires the right amount of flow between all $x,y\in\mathcal{X}$
- if there is too much flow $x \rightsquigarrow y$, re-map some part of it as $x \rightsquigarrow x$

Metropolis–Hastings (MH) algorithm:

- Input: a proposal density $q(y \mid x)$, the target f (up to a constant)
- \bullet for t=1,2,..., update $X^{(t-1)}$ to $X^{(t)}$ by
 - generate $U^{(t)} \sim q(\cdot \mid X^{(t-1)})$
 - define

$$\alpha(X^{(t-1)}, U^{(t)}) = \min\left\{1, \frac{f(U^{(t)})q(X^{(t-1)} \mid U^{(t)})}{f(X^{(t-1)})q(U^{(t)} \mid X^{(t-1)})}\right\}$$

- set $X^{(t)} := U^{(t)}$ with probability $\alpha(X^{(t-1)}, U^{(t)})$
- otherwise set $X^{(t)} := X^{(t-1)}$

(if the proposal is symmetric, q vanishes from the formula above)

MH: Convergence Properties

MH Markov Chain satisfies the detailed balance condition with

$$k\left(y,x\right) = \alpha\left(x,y\right)q\left(y\mid x\right) + \int \{1 - \alpha(x,\xi)\}q(\xi\mid x)d\xi\delta_{x}\left(y\right)$$

where δ is the Dirac mass

- If $q(y \mid x) > 0$, $\forall x, y$, then the chain is irreducible
- If

$$P\left(\frac{f(U^{(t)})q(X^{(t-1)}\mid U^{(t)})}{f(X^{(t-1)})q(U^{(t)}\mid X^{(t-1)})} \ge 1\right) < 1,$$

that is the event $\{X^{(t+1)} = X^{(t)}\}$ is possible, then the chain is aperiodic

Thus, under the above two conditions, we have

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g\left(X^{(t)}\right) = \int g(x) df(x),$$

for $\mathbb{E}_f|g(X)| < \infty$

Linda Mhalla

MH with Random Walk

• use a local perturbation as proposal

$$U^{(t)} = X^{(t-1)} + \epsilon_t,$$

where $\epsilon_t \sim g$, independent of $X^{(t-1)}$

- ullet proposal q is a symmetric (around 0) density of the form q(u-x)
 - e.g., g is $\mathcal{N}(0, \sigma^2)$ hence $U^{(t)} \sim \mathcal{N}(X^{(t-1)}, \sigma^2)$
 - e.g., q is $\mathcal{U}[-\delta, \delta]$ hence $U^{(t)} \sim \mathcal{U}[X^{(t-1)} \delta, X^{(t-1)} + \delta]$
- then,

$$\alpha(X^{(t-1)}, U^{(t)}) = \min\left(1, \frac{f(U^{(t)})}{f(X^{(t-1)})}\right)$$

MH with Random Walk

Verifying detailed balance is relatively simple in this case:

- detailed balance: k(x,u)f(x) = k(u,x)f(u) for $x \rightsquigarrow u$
- k(x, u) is given implicitly as the mixture of
 - moving away $x \rightsquigarrow u$ with probability $\alpha(x, u) = \min\{1, f(u)/f(x)\}$
 - ullet u is drawn from $q(u \mid x)$ a symmetric density around x
 - equal to

$$k(x,u) = \alpha(x,u)q(u\mid x) = \alpha(x,u)q(u-x) = \alpha(x,u)q(x-u)$$

- staying at x with probability $1 \alpha(x, u)$
 - ullet i.e., x=u ... detailed balance trivially satisfied
- detailed balance: $g(u+x)\alpha(x,u)f(x) = g(x+u)\alpha(u,x)f(u)$
- this is trivial since for $f(x) \neq f(u)$ it is
 - \bullet either $\alpha(u,x)=1$ and $\alpha(x,u)=f(u)/f(x)$ leading to

$$\frac{f(u)}{f(x)}f(x) = f(u)$$

• or the other way around

MH Remarks

- ullet is usually a posterior, evaluations needed up to normalization
- MH similar in flavor to rejection sampling (RS) in MC
 - \bullet but RS needs a majorizing proposal g to decide accept vs. reject
 - MCMC instead moves vs. stays ⇒ no majorization needed
- ullet never moves to values with f(y)=0
- \bullet the chain $\left(X^{(t)}\right)_t$ may take the same value several times in a row, even when f is a density wrt Lebesgue measure

Def.: acceptance rate for MH is the average acceptance probability

$$\bar{\alpha} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \alpha(X^{(t-1)}, U^{(t)})$$

- ullet if $ar{lpha}$ too large, we are probably not exploring the space, mostly staying close with our proposals to where we already were
- \bullet if $\bar{\alpha}$ too small, we have a lot of repeated values in our sample and hence the effective sample size is small even for large T
- good rates: 25% (large dimension) 50% (small dimension)

MH: Summary

credit: Marcel Lüthi, University of Basel

Example: MH with Random Walk

Consider the MH algorithm with

• a Gaussian mixture target model

$$f_{\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\tau}(x)=\tau\varphi_{\mu_1,\sigma_1^2}(x)+(1-\tau)\varphi_{\mu_2,\sigma_2^2}(x)$$
 with $\mu_1=1,\mu_2=5,\sigma_1=\sigma_2=1$ and $\tau=0.7$

- a Gaussian random walk proposal $y \sim \mathcal{N}(x, \sigma^2)$, with $\sigma = 0.1, 3, 80$
- $x^{(0)} = -10$

Example: MH with Random Walk

⇒ proposals often accepted but chain moves too slowly

 \Rightarrow chain gets stuck for too long

Example: MH with Random Walk

 \Rightarrow seems the best

References

- C. P. Robert & G. Casella (1999) Monte Carlo Statistical Methods
- C. P. Robert & G. Casella (2010) Introducing Monte Carlo Methods with R
- Gelman & Carlin & Stern & Dunson & Vehtari & Rubin. 2013. Bayesian Data Analysis updated version