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Bayes' Rule

Let X be a random variable and 6 a parameter, considered also a random
variable:

Fxo(@,0) = fxjp( | 0) fo(0) = fox (0| ) fx ().

likelihood ~ Prior posterior

@ likelihood = frequentist model
@ likelihood & prior = Bayesian model

Rewritten:

f@\X:x()(e | 2g) o wa(i’?o 1 6)f5(0),

in words: posterior o likelihod x prior

@ posterior has all the answers, but is often intractable = MCMC

Linda Mhalla Week 12: Bayesian Computations (continued’ 2024-12-06 2/36



Metropolis—Hastings

Metropolis—Hastings (M—H) algorithm:

@ Input: a proposal density q(y | ), the target f (up to a constant)
o fort =1,2,..., update X~ to X*) py

o generate UM ~ g(- | X(*=1)

o define

t -1

FXED)g(U | X-0)

o set X := U® with probability a(X 1, U®)
o otherwise set X(*) := X (-1
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Metropolis—Hastings

Under some conditions (see last week's lecture), the chain is ergodic
(geometrically, i.e., exponentially fast convergence to stationarity or
uniformly /strongly)

MH with random walk is geometrically ergodic if and only if its target
distribution has exponentially light tails; see this paper and this paper

Independent MH is geometrically ergodic if and only if its proposal
density is bounded below by a constant multiple of the target density;
see this paper

Metropolis—Hastings: extremely versatile approach to MCMC, but a
good proposal (yielding good mixing rate/exploration of space) can
be hard to find

For the common random walk M-H, this is a scaling issue

e too small and the chain will move too slowly; too large and the
proposals will usually be rejected
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https://watermark.silverchair.com/83-1-95.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAA34wggN6BgkqhkiG9w0BBwagggNrMIIDZwIBADCCA2AGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMK7HaCbr27P2i5ESAAgEQgIIDMXuO_HTPCXezJsNO6cf9ZC9p0eRJFYR5N33D5Sg5vFcYdChioWi5ikfWHAm6mRZ5dqbBLDewBTWZ4nqgQGhufSCdt4Df3P0nxro6HPDn7JZHC_9eJzhbX3ukRZ_MI_AgWAXpF2RJAyWXxpkVJjMRD5GLsFkCjE_IvDqxovdUurlzuj6JHgn347lJOic5NKCTelECG0yq0tiqBtFI_DNhY2JeUdS8766Pg-X-aBn2oyrfyWEE-gKloCRFTBy26Uz9oI2gchpPD41z6a0DL_L9WUdjVCYj3a6n9d8ABttXgOSVPTdIT80iaG5YjxpWBzcUGBmXxeyUFYBq1viL8tCpYh48n0CjbxYVwq0M8-Ckeyru18L2MZ76JrqobWo7muJJwFtLaaP5nA-V8kvCKd52YOrVvlzKtwNPxGV73lzHr9mhApk1iOZwNr-nhb00uwkc42lLT2BL51jF4uqXMpFA3n_-o94G6I0GdfgMvkUKJM43ZIcLCd_3jyzyUy8DyddrEE4OZQnGWYCZE09o9qL7y5zoHtVTGJWjFZ8Mt-Qd1Q3GBj57MeVmsIfYo93GWUwbvpAdpWzJP8KYI7FFWO7poPu4X5RDwzyaIGQ42mU9vwe_E4Kk9Fv7wpROnwbQgG5Cp-crTKcY6QZij0pXn2ZlMkXrxsg3A6rHJCrb85vdVotDcPbn8NJS7kZ8bWo7QKT96khZoFvU0yHWJqroH4uLjodmsNv0B86nUE0kcXLp2GrhgLpn48FwhOPDIX_5hanYt5Tvv-iwW3z51kUNYqiNfoxEWeV0QZ6FSgh4uwvO9AgsnvO2gZ2pt6R2Z6h4fslZ90cQHF0tVtZDnAETv_aEqvwtCbTc15fwY_gILh-ZVOvZlDye4kZE1lvdYisxYtlIY6l8Qkp4him69EHDXmwAOOcTQzUzOLUxaRW0DN25OoxyOY3XAS7MaQMq6iDxV_x2s00sKW6FQTY-1_t0cguj8dyn-i4goTtlWp8pp1-oxTtqmZeZPsv8CgoGFbVb9ceus6kUqc0xvKCEhlKdzvQNhmFiO7fNEbNKoio-xryOeWaAs7_WqSMYZp0P7VxOkSlpr70
https://link.springer.com/article/10.1007/BF00162521

Adaptive M—H: few words

e trial and error
e if the acceptance rate seems too high, then we increase the proposal
scaling
e if the acceptance rate seems too low, then we decrease the scaling
@ or let the computer decide on the fly
e suppose we have a family {Pv} of possible Markov chains, each
veYd

with stationary distribution f(-). Let the computer choose among
them! At iteration n, use Markov chain PF , where I, € ¥ chosen
according to some adaptive rules (dependlng on chain's history, etc.)
e = Markov property and stationarity are destroyed. Will it still
converge? Use “finite adaptation”, i.e., stop adapting after a while

See Roberts and Rosenthat (2009) for examples of adaptive MCMC

Example (to follow): optimal proposal depends on the covariance matrix
of the target, then take the empirical covariance at each step n
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https://www.tandfonline.com/doi/abs/10.1198/jcgs.2009.06134
https://projecteuclid.org/journals/annals-of-applied-probability/volume-7/issue-1/Weak-convergence-and-optimal-scaling-of-random-walk-Metropolis-algorithms/10.1214/aoap/1034625254.full

Adaptive M—H: few words

It is known from Roberts et al. (1997) and Roberts and Rosenthal (2001) that the
proposal V(x, (2.38)2%/d) is optimal in a particular large-dimensional context

@ Haario et al (2001) propose a simple and effective adaptive random walk

Metropolis
@ run the MH with random walk with a Gaussian proposal for a fixed number

of iterations for s < s
@ estimate of covariance at state s

ss) _ L 3 X0 X0 X))
S \'=1
@ proposal for s > s, with § = 2.38/v/d
UGt~ NV (X, 62 (S +ely))
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https://projecteuclid.org/journals/bernoulli/volume-7/issue-2/An-adaptive-Metropolis-algorithm/bj/1080222083.full

Gibbs Sampler

Idea: take advantage of the hierarchical structure, i.e., decompose the
multidimensional distribution into full conditionals and draw from those in
a cyclic manner

@ not as universal as M—H, since calculation of the conditional
distributions not always possible

The Gibbs sampler algorithm based on the target distribution f is

© use the full conditional densities f, ..., f; from f

. . T
@ start with the random variable X = (X, ..., X;)
© simulate from the conditional densities

Xi | @1, @g, o s Ty, Tyyqs e s By

~ fz (:EI | L1, Loy ey Ty 1, L5475 - ,.’Ed)

fori=1,2,...,d
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Systematic Gibbs Sampler

The systematic Gibbs sampler proceeds as follows from initial

0 0
2© = @0, .. T
@ fort=1,2,...
e generate x(lt) from X, | X, = x(Q 1 , Xy = <t 1) Xy = xg/ 2
e generate m(Q from X, | X; = x(l , Xy = ng 1), Xd = x&t 2
° generate xip from X, | X; = J;(lt),X2 = a:(;>, vy Xgq = a:g 11)
= full conditionals fi, ..., f; are the only densities used for simulation
The transition kernel is
B, 20) = gy (o) ¢ g (o580, )
X fXd‘de (:cilt \m(lt),“ ‘dt)l)

@ admits f as stationary distribution (show that [ k(x,y)f(x)dx = f(y))
@ does not satisfy the detailed balance condition
@ LLN applies if f satisfies positivity condition
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Gibbs Sampler and Positivity Condition

Definition:
A distribution with density f(xy,,,...,x,) and marginal densities
fx, (x;) is said to satisfy the positivity condition if for all zy, ..., z, such

that fx (z;) >0, we have f(xy,%,,...,24) > 0 (support of joint = []
support of margins)

Result: If the target distribution f satisfies the positivity condition, then
the MC generated by the systematic Gibbs sampler satisfies

1 "
Tl:ngofgh(X( )) = /h(x)df(a:)
for any integrable function b : X — R

Linda Mhalla Week 12: Bayesian Computations (continued’ 2024-12-06 9/36



Positivity Condition Violated

Gibbs sampling targeting m(x, y) o¢ L(_y gjx-1,01u(0,1]x[0,1] (Z+ ¥)

2_

>0 -

-1

—2-

Gibbs sampler can be reducible (we cannot get arbitrarily close to any of
the points, by making moves parallel to the axes)
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Remarks on Gibbs Sampler

Although the systematic Gibbs sampler does not satisfy detailed balance,
each of its d components does

@ Suppose we are at point x and decide to modify component j of x to
take the value z

o Let y be the point with y; = z and y,, = x, for k # j

o If y is used as the proposal in Metropolis—Hastings, the M—H ratio is:

(y)a(x|y) _ f(m—j)f(z | x—j)f(%‘ | ‘T—j) _
(x)q(y | x) f(x,j)f(:cj | x7j>f(z | ﬂhj)

f

a(x,y) =
f

= Updating component j of x by sampling from its full conditional
distribution can be viewed as a M—H proposal that is never rejected!

= this motivates the random scan Gibbs sampler
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Random Scan Gibbs Sampler

-
Algorithm: Random scan Gibbs sampler Let (X§O>, ,Xflo)) be the

initial state then iterate for t = 1,2, ...

@ sample an index j from a distribution on {1, ..., d} (typically uniform)
t t—1 t—1 t—1 t—1
@ sample X" ~ fx o, (41 XY XY XY XY
and set X,(:) = X,Effl) for k # j

= Random scan Gibbs is a multi-component Metropolis—Hastings sampler
with acceptance probability equal to 1 and transition kernel

d
K (2D, 20 = %Z Py, (27 12%7) 8 00 (27))
=1

“ j

= satisfies detailed balance and admits f as stationary distribution
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Toy Example

Using the systematic Gibbs sampler, calculate P(X; > 0, X, > 0) for

x- o~ (4).(74))

Easy, since Gaussian conditionals are Gaussian:

0
XiXj:IjNN<:ui+a_2_(xj_/~Lj)>Ui2_

<
h.qm ‘ bm
N————

The Gibbs sampler proceeds as follows in this case
@ sample X" ~ N (uy + /0% (X5 — i), 0% — p?/03)
@ Sample X)) ~ N (g + /03 (XV — 1y .03 — p?/0?)

E.g., for p; =py =0, 0, =05 =1 and p = 0.3, we have..
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Toy Example

set.seed(123)

burnin <- 1000

TT <- 2000

X1 <- rep(0, burnin+TT)

X2 <- rep(0, burnin+TT)

rho <- 0.3

X1[1] <- 0

X2[1] <- 0

for(t in 2: (burnin+TT)){
X1[t] <- rnorm(1,0+rho/1*(X2[t-1]1-0), sqrt(1-rho~2/1))
X2[t] <- rnorm(1,0+rho/1x(X1[t]-0), sqrt(l-rho~2/1))

}

X1 <- X1[-(1:burnin)]

X2 <- X2[-(1:burnin)]

sum((X1 >= 0 & X2 >= 0 ))/TT # empirical P(X1 >= 0, X2 >= 0)
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Toy Example

Markov chain X®) has correlated successive samples

First 100 steps (with p = 0.3)

: I
NIl

T T
-2 0 2

X

P(X, >0,X, > 0) is estimated at 0.298 (true ~ 0.2984)
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Toy Example

Markov chain X(®) has strongly correlated successive samples = chain
mixes slowly

First 100 steps (with p = 0.99)

e -

P(X, >0,X, > 0) is estimated at 0.5635 (true ~ 0.4775)
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Toy Example

densiy

(a) large correlation (a) small correlation

Histogram of first component after
4000 iterations
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Toy Example

densiy

(a) large correlation (a) small correlation

Histogram of first component after
10000 iterations
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Metropolis-within-Gibbs

What if sampling from full conditionals isn't easy for Gibbs?
@ do a single Metropolis—Hastings step instead
What if parameters are naturally grouped in a real application?

@ e.g., some parameters correspond to location and others to scale

@ location parameters can usually be sampled at once, conditionally on
all the other parameters

o blocked Gibbs sampler: blocks of variables are updated by sampling
from their joint conditional on all other variables
e potentially via a M—H step

Limitations of the Gibbs sampler

@ limits the choice of target distributions
@ requires some knowledge of f
@ is multi-dimensional, by construction
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Gibbs Sampling in Practice

@ Many posterior distributions can be automatically decomposed into
conditional distributions by computer programs

— This is the idea behind BUGS (Bayesian inference Using Gibbs
Sampling) or JAGS (Just another Gibbs Sampler) with R packages

e rjags (see the JAGS user manual)

e runjags Denwood (2016): for additional functionalities, including
parallel computing

The Stan platform implements MCMC sampling using the Hamiltonian

Monte Carlo (transitions rely on derivatives of the target) and its adaptive
variant NUTS

— available in different languages (R, Python, Julia)
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http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf
https://www.jstatsoft.org/article/view/v071i09
https://mc-stan.org

Output Analysis

MCMC compared to MC:

@ sacrifices independence for more versatility
e ergodic theory: independence not really needed in the long run
@ in practice, the question is: what is a long enough run?
@ just inspect the samples drawn (after discarding burnin)
e check whether the acceptance rate is reasonable
e visualize graphical outputs (to follow)
o calculate diagnostic statistics (to follow)
@ in reality, we can never know
o silent failure?! E.g., careless use of Gibbs (conditional distributions are
well defined but their combination does not correspond to any joint
distribution...), or positivity condition violated
e but sometimes, we can know for sure that there is a problem!
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Output Analysis: Multiple starting points

Simple ideas such as running multiple chains and checking that they are
converging to similar distributions are often employed in practice

@ We start M chains from various (dispersed) starting points

o After enough iterations, the starting point should not matter and
hence we should obtain the same results based on each chain

@ We have the classical “"sum of squares” decomposition in “intra
group” and “inter group” terms:

ii mt ,-)2 - ii(xm,-_x-;f

m=1 t=1 m=1 t=1
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Output Analysis: Multiple starting points

@ This leads to considering

In principle W (mean of empirical variance within each chain) and V'
(empirical variance from all chains) should both converge to the true

variance of the target distribution — plot /V /W (for different iterations)

and compare it to 1 (version in R is slightly different)

This leads to the shrink factor of Gelman—Rubin: variance between chains relative
to variance within chains (if multiple chains reached the target then this factor

should be 1)
@ > 1 indicates instability, with variability in the combined chains exceeding

that within the chains
@ rule of thumb: red flag if > 1.05
2024-12-06
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Output Analysis

@ trace plots are often used to informally assess stochastic convergence
e if MCMC is working, they should look like a “fat, hairy caterpillar”
e ACF (autocorrelation function) plots display the autocorrelation
within a chain as a function of the lag
o if the ACF takes too long to decay to 0, the chain exhibits a high
degree of dependence and will tend to get stuck

o
=
0 4
u
i
3 o
5]
>
o > 1.
T ; ; ; ; sk : ; T s
0 2000 4000 6000 8000 0 50 100 150 200
t Lag
L o
o
8 o4 L
= O <«
g i < o
o =
T4 ; ; ; ; . ° L ; - . :
0 2000 4000 6000 8000 0 50 100 150 200
t Lag

Linda Mhalla Week 12: Bayesian Computations (continued’ 2024-12-06 24 /36



Output Analysis: Beta-Binomial Model

| M ‘l\.JmM’ | JI i IHH\ ,

@ the chains mix qmckly (move quickly around plausible values of the
posterior)

@ the autocorrelation quickly drops off

@ shrink factor & 1 (stability across parallel chains)

= if not, use more iterations or try thinning, i.e., use every k-th
observation (reduces correlation) or different scaling of proposal (if M-H)
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Simple but Real Example

@ the height (in inches) of college students has N (1, 0'?)
e we work with o, i.e., the standard deviation instead of variance
@ only binned data available

X
(-Inf,60] (60,621 (62,641 (64,661 (66,681 (68,701 (70,721 (72,741 (74, Inf]
32 7 110 108 107 78 81 34 20

@ multinomial data, probabilities depend on 1 and o
o e.g., prob. of an obs. falling into (60,62] is @, ,(62) — @, ,(60)
@ likelihood:

9
Fd] o) oc [[{®,0(a;) = @, 5 (a; 1)} = €, 0)

@ prior: f(u,0)=1/0
o improper prior (Jeffrey's prior)
o changing variable A\ = log(c) removes 1/0 from the posterior

Posterior:
flp,o | D=d) oc t{p, exp(\)}
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Real but Simple Example

@ Aim: sample from posterior using normal random walk M—H
gtt) = x 4 57

where Z ~ N (0,%) and s > 0 is a scale parameter
e overparametrization for the sake of convenience (debatable)
e for MH we have to choose
o starting point (1?0, AT
o scale s
e covariance X
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Real but Simple Example

@ Looking at the binned data, why not take
° (M(0)7)\(0))T - (687 1>T
e scale s = 1 = acceptance too low (0.009), so let's take s = 0.1
e covariance ¥ = I, ,

66.0 665 67.0 675 68.0

Acceptance rate: 0.3134
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Real but Simple Example

@ above starting point chosen badly

@ normally taken care of by burnin, here let's re-run
o (N = (66,1.4)"

1.55

145 150
I |

1.40
I

1.35
|

Acceptance rate: 0.3196

Linda Mhalla Week 12: Bayesian Computations (continued’ 2024-12-06 29 /36



Real but Simple Example - Ouput Check

Trace plot for pu Trace plot for A
8
—
n
o~ <
1 © <
©
n
*
© i
8 . . . . T T . . . . T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration
ACF for p ACF for A
© ©
c o
'8 1 b 4
ggi "2 ‘
) HHHHHHHHHHHH ) MH\\
CEES T T T T S T 7 7 T
0 10 20 30 40 0 10 20 30 40
Lag Lag
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Real but Simple Example - Ouput Check

@ the plots above look good, but values of 1 are correlated for too long

@ their correlation can be reduced by taking > diagonal with the

variance for p higher than that for A
@ actually, why not take X estimated from our previous run

[,1] [,2]
[1,] 3.035891e-02 7.329492e-05
[2,] 7.329492e-05 9.306388e-04

@ acceptance too high with our s = 0.1 now, let's increase s
o s =1 gives 58%
o let's take s = 2
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Real but Simple Example - Final Run

Let's analyze the output again

Trace plot for p Trace plot for A
o o T
o o
18] < 1
<1 @ |
8 % 2000 4000 6000 8000 10000 ~ 0 2000 4000 6000 8000 10000
Iteration Iteration
ACF for p ACF for A
i o ]
© © |
58 ‘ o
il sl
O_i MMHMH O_i HH“\\\\\
o T T T T T o T T T T T
0 10 20 30 40 0 10 20 30 40
Lag Lag

Acceptance rate: 0.5386
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Real but Simple Example - Estimated Posterior

1.50-
-
1.45-
<
1.40-
1.35- - = -
-
65.50 65.75 66.00 66.25 66.50 66.7¢

u

The posterior mean estimates are 1 = 66.159 and A =1.435
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Final Thoughts

@ Bayesianism is a different way of thinking about problems
e e.g., hierarchical models

@ prior versus no prior

MLE versus MAP

sampling not the only way to be Bayesian
e variational methods (back to optimization)
o empirical Bayes (back to frequentism)
Hamiltonian MC and NUTS
e explore the space in an adaptive way
e BUGS & JAGS
o packages for Bayesian computations (JAGS has R interface rjags)
e uses model structure and Gibbs sampling whenever possible
e STAN
e a package with R interface rstan
e uses NUTS
@ silent failure!?
e multimodal distributions problematic for sampling
e plateau regions problematic for optimization
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Final Thoughts

@ as sample size | D| grows:
e at first, we are going away from the prior, and the posterior is getting
complicated
o then, the posterior becomes more and more regular (courtesy of CLT)
and the prior serves as a bit of regularization
e eventually, the prior stops mattering
@ back to frequentism in the large sample limit
@ in every statistical task, there are three sources of error:
o data is random (vanishes with increasing data set)
e my model is wrong (never goes away)
e inference is inexact (vanishes with investing more computational
resources)

Far better an approximate answer to the right question, than the exact answer to
the wrong question.
— John W. Tukey
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Assignment 8

No more assignments! But, | would appreciate your feedback on specific
aspects of the course

See the Moodle page of the course
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