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Bayes’ Rule

Let 𝑋 be a random variable and 𝜃 a parameter, considered also a random
variable:

𝑓𝑋,𝜃(𝑥, 𝜃) = 𝑓𝑋∣𝜃(𝑥 ∣ 𝜃)⏟⏟⏟⏟⏟
likelihood

𝑓𝜃(𝜃)⏟
prior

= 𝑓𝜃∣𝑋(𝜃 ∣ 𝑥)⏟⏟⏟⏟⏟
posterior

𝑓𝑋(𝑥).

likelihood = frequentist model
likelihood & prior = Bayesian model

Rewritten:

𝑓𝜃∣𝑋=𝑥0
(𝜃 ∣ 𝑥0) ∝ 𝑓𝑋∣𝜃(𝑥0 ∣ 𝜃)𝑓𝜃(𝜃),

in words: posterior ∝ likelihod × prior

posterior has all the answers, but is often intractable ⇒ MCMC

Linda Mhalla Week 12: Bayesian Computations (continued) 2024-12-06 2 / 36



Metropolis–Hastings

Metropolis–Hastings (M–H) algorithm:

Input: a proposal density 𝑞(𝑦 ∣ 𝑥), the target 𝑓 (up to a constant)
for 𝑡 = 1, 2, …, update 𝑋(𝑡−1) to 𝑋(𝑡) by

generate 𝑈 (𝑡) ∼ 𝑞(⋅ ∣ 𝑋(𝑡−1))
define

𝛼(𝑋(𝑡−1), 𝑈 (𝑡)) = min {1, 𝑓(𝑈 (𝑡))𝑞(𝑋(𝑡−1) ∣ 𝑈 (𝑡))
𝑓(𝑋(𝑡−1))𝑞(𝑈 (𝑡) ∣ 𝑋(𝑡−1))}

set 𝑋(𝑡) ∶= 𝑈 (𝑡) with probability 𝛼(𝑋(𝑡−1), 𝑈 (𝑡))
otherwise set 𝑋(𝑡) ∶= 𝑋(𝑡−1)
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Metropolis–Hastings
Under some conditions (see last week’s lecture), the chain is ergodic
(geometrically, i.e., exponentially fast convergence to stationarity or
uniformly/strongly)

MH with random walk is geometrically ergodic if and only if its target
distribution has exponentially light tails; see this paper and this paper

Independent MH is geometrically ergodic if and only if its proposal
density is bounded below by a constant multiple of the target density;
see this paper

Metropolis–Hastings: extremely versatile approach to MCMC, but a
good proposal (yielding good mixing rate/exploration of space) can
be hard to find

For the common random walk M–H, this is a scaling issue
too small and the chain will move too slowly; too large and the
proposals will usually be rejected

There are many other families of MH algorithms: adaptive M–H (to
follow) and Langevin algorithms, to name a few!
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https://link.springer.com/article/10.1007/BF00162521


Adaptive M–H: few words

trial and error
if the acceptance rate seems too high, then we increase the proposal
scaling
if the acceptance rate seems too low, then we decrease the scaling

or let the computer decide on the fly
suppose we have a family {𝑃𝛾}𝛾∈𝒴 of possible Markov chains, each
with stationary distribution 𝑓(⋅). Let the computer choose among
them! At iteration 𝑛, use Markov chain 𝑃Γ𝑛

, where Γ𝑛 ∈ 𝒴 chosen
according to some adaptive rules (depending on chain’s history, etc.)
⇒ Markov property and stationarity are destroyed. Will it still
converge? Use “finite adaptation”, i.e., stop adapting after a while

See Roberts and Rosenthat (2009) for examples of adaptive MCMC

Example (to follow): optimal proposal depends on the covariance matrix
of the target, then take the empirical covariance at each step 𝑛
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Adaptive M–H: few words
It is known from Roberts et al. (1997) and Roberts and Rosenthal (2001) that the
proposal 𝒩(𝑥, (2.38)2Σ/𝑑) is optimal in a particular large-dimensional context

Haario et al (2001) propose a simple and effective adaptive random walk
Metropolis
run the MH with random walk with a Gaussian proposal for a fixed number
of iterations for 𝑠 < 𝑠0
estimate of covariance at state 𝑠

Σ(𝑠) = 1
𝑠 (

𝑠
∑
𝑖=1

𝑋(𝑖)𝑋(𝑖)𝑇 − 𝑠𝑋̄(𝑠)𝑋̄(𝑠)𝑇 )

proposal for 𝑠 > 𝑠0 with 𝛿 = 2.38/
√

𝑑

𝑈 (𝑠+1) ∼ 𝒩 (𝑋(𝑠), 𝛿2 (Σ(𝑠) + 𝜖𝐼𝑑))
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Gibbs Sampler
Idea: take advantage of the hierarchical structure, i.e., decompose the
multidimensional distribution into full conditionals and draw from those in
a cyclic manner

not as universal as M–H, since calculation of the conditional
distributions not always possible

Full conditional: 𝑓𝑖(𝑥𝑖 ∣ 𝑥−𝑖) = 𝑓𝑖(𝑥𝑖 ∣ 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑑)
The Gibbs sampler algorithm based on the target distribution 𝑓 is

1 use the full conditional densities 𝑓1, … , 𝑓𝑑 from 𝑓
2 start with the random variable X = (𝑋1, … , 𝑋𝑑)⊤

3 simulate from the conditional densities

𝑋𝑖 ∣ 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑑
∼ 𝑓𝑖 (𝑥𝑖 ∣ 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑑)

for 𝑖 = 1, 2, … , 𝑑
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Systematic Gibbs Sampler
The systematic Gibbs sampler proceeds as follows from initial
𝑥(0) = (𝑥(0)

1 , … , 𝑥(0)
𝑑 )⊤:

for 𝑡 = 1, 2, …
generate 𝑥(𝑡)

1 from 𝑋1 ∣ 𝑋2 = 𝑥(𝑡−1)
2 , 𝑋3 = 𝑥(𝑡−1)

3 , … , 𝑋𝑑 = 𝑥(𝑡−1)
𝑑

generate 𝑥(𝑡)
2 from 𝑋2 ∣ 𝑋1 = 𝑥(𝑡)

1 , 𝑋3 = 𝑥(𝑡−1)
3 , … , 𝑋𝑑 = 𝑥(𝑡−1)

𝑑
…
generate 𝑥(𝑡)

𝑑 from 𝑋𝑑 ∣ 𝑋1 = 𝑥(𝑡)
1 , 𝑋2 = 𝑥(𝑡)

2 , … , 𝑋𝑑−1 = 𝑥(𝑡−1)
𝑑−1

⇒ full conditionals 𝑓1, … , 𝑓𝑑 are the only densities used for simulation
The transition kernel is

𝐾 (𝑥(𝑡−1), 𝑥(𝑡)) = 𝑓𝑋1∣𝑋−1 (𝑥(𝑡)
1 ∣ 𝑥(𝑡−1)

2 , … , 𝑥(𝑡−1)
𝑑 ) × 𝑓𝑋2∣𝑋−2 (𝑥(𝑡)

2 ∣ 𝑥(𝑡)
1 , 𝑥(𝑡−1)

3 , … , 𝑥(𝑡−1)
𝑑 ) × ⋯

× 𝑓𝑋𝑑∣𝑋−𝑑 (𝑥(𝑡)
𝑑 ∣ 𝑥(𝑡)

1 , … , 𝑥(𝑡)
𝑑−1)

admits 𝑓 as stationary distribution (show that ∫ 𝑘(𝑥, 𝑦)𝑓(𝑥)𝑑𝑥 = 𝑓(𝑦))
does not satisfy the detailed balance condition
LLN applies if 𝑓 satisfies positivity condition
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Gibbs Sampler and Positivity Condition

Definition:

A distribution with density 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) and marginal densities
𝑓𝑋𝑖

(𝑥𝑖) is said to satisfy the positivity condition if for all 𝑥1, … , 𝑥𝑑 such
that 𝑓𝑋𝑖

(𝑥𝑖) > 0, we have 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) > 0 (support of joint = ∏
support of margins)

Result: If the target distribution 𝑓 satisfies the positivity condition, then
the MC generated by the systematic Gibbs sampler satisfies

lim
𝑇 →∞

1
𝑇

𝑇
∑
𝑡=1

ℎ (𝑋(𝑡)) = ∫ ℎ(𝑥)𝑑𝑓(𝑥)

for any integrable function ℎ ∶ 𝕏 → ℝ
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Positivity Condition Violated

Gibbs sampling targeting 𝜋(𝑥, 𝑦) ∝ 𝟙[−1,0]×[−1,0]∪[0,1]×[0,1](𝑥, 𝑦)

Gibbs sampler can be reducible (we cannot get arbitrarily close to any of
the points, by making moves parallel to the axes)
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Remarks on Gibbs Sampler

Although the systematic Gibbs sampler does not satisfy detailed balance,
each of its 𝑑 components does

Suppose we are at point x and decide to modify component 𝑗 of x to
take the value 𝑧
Let y be the point with 𝑦𝑗 = 𝑧 and 𝑦𝑘 = 𝑥𝑘 for 𝑘 ≠ 𝑗
If y is used as the proposal in Metropolis–Hastings, the M–H ratio is:

𝛼(x, y) = 𝑓(y)𝑞(x ∣ y)
𝑓(x)𝑞(y ∣ x) = 𝑓(𝑥−𝑗)𝑓(𝑧 ∣ 𝑥−𝑗)𝑓(𝑥𝑗 ∣ 𝑥−𝑗)

𝑓(𝑥−𝑗)𝑓(𝑥𝑗 ∣ 𝑥−𝑗)𝑓(𝑧 ∣ 𝑥−𝑗)
= 1

⇒ Updating component 𝑗 of x by sampling from its full conditional
distribution can be viewed as a M–H proposal that is never rejected!

⇒ this motivates the random scan Gibbs sampler
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Random Scan Gibbs Sampler

Algorithm: Random scan Gibbs sampler Let (𝑋(0)
1 , … , 𝑋(0)

𝑑 )
⊤

be the
initial state then iterate for 𝑡 = 1, 2, …

1 sample an index 𝑗 from a distribution on {1, … , 𝑑} (typically uniform)
2 sample 𝑋(𝑡)

𝑗 ∼ 𝑓𝑋𝑗∣𝑋−𝑗
(⋅ ∣ 𝑋(𝑡−1)

1 , … , 𝑋(𝑡−1)
𝑗−1 , 𝑋(𝑡−1)

𝑗+1 , … , 𝑋(𝑡−1)
𝑑 )

and set 𝑋(𝑡)
𝑘 ∶= 𝑋(𝑡−1)

𝑘 for 𝑘 ≠ 𝑗
⇒ Random scan Gibbs is a multi-component Metropolis–Hastings sampler
with acceptance probability equal to 1 and transition kernel

𝐾 (𝑥(𝑡−1), 𝑥(𝑡)) = 1
𝑑

𝑑
∑
𝑗=1

𝑓𝑋𝑗∣𝑋−𝑗
(𝑥(𝑡)

𝑗 ∣ 𝑥(𝑡−1)
−𝑗 ) 𝛿𝑥(𝑡−1)

−𝑗
(𝑥(𝑡)

−𝑗)

⇒ satisfies detailed balance and admits 𝑓 as stationary distribution
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Toy Example
Using the systematic Gibbs sampler, calculate 𝑃(𝑋1 ≥ 0, 𝑋2 ≥ 0) for

𝑋 = (𝑋1, 𝑋2)⊤ ∼ 𝒩 ((𝜇1
𝜇2

) , (𝜎2
1 𝜌

𝜌 𝜎2
2
))

Easy, since Gaussian conditionals are Gaussian:

𝑋𝑖 ∣ 𝑋𝑗 = 𝑥𝑗 ∼ 𝒩 (𝜇𝑖 + 𝜌
𝜎2

𝑗
(𝑥𝑗 − 𝜇𝑗), 𝜎2

𝑖 − 𝜌2

𝜎2
𝑗

)

The Gibbs sampler proceeds as follows in this case

1 Sample 𝑋(𝑡)
1 ∼ 𝒩 (𝜇1 + 𝜌/𝜎2

2 (𝑋(𝑡−1)
2 − 𝜇2) , 𝜎2

1 − 𝜌2/𝜎2
2)

2 Sample 𝑋(𝑡)
2 ∼ 𝒩 (𝜇2 + 𝜌/𝜎2

1 (𝑋(𝑡)
1 − 𝜇1) , 𝜎2

2 − 𝜌2/𝜎2
1)

E.g., for 𝜇1 = 𝜇2 = 0, 𝜎1 = 𝜎2 = 1 and 𝜌 = 0.3, we have…
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Toy Example
set.seed(123)
burnin <- 1000
TT <- 2000
X1 <- rep(0, burnin+TT)
X2 <- rep(0, burnin+TT)
rho <- 0.3
X1[1] <- 0
X2[1] <- 0
for(t in 2:(burnin+TT)){
X1[t] <- rnorm(1,0+rho/1*(X2[t-1]-0), sqrt(1-rho^2/1))
X2[t] <- rnorm(1,0+rho/1*(X1[t]-0), sqrt(1-rho^2/1))

}
X1 <- X1[-(1:burnin)]
X2 <- X2[-(1:burnin)]

sum((X1 >= 0 & X2 >= 0 ))/TT # empirical P(X1 >= 0, X2 >= 0)
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Toy Example

Markov chain 𝑋(𝑡) has correlated successive samples

First 100 steps (with 𝜌 = 0.3)

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
2

−4

−2

0

2

4

−4 −2 0 2 4
x1

x2

𝑃(𝑋1 ≥ 0, 𝑋2 ≥ 0) is estimated at 0.298 (true ≈ 0.2984)
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Toy Example

Markov chain 𝑋(𝑡) has strongly correlated successive samples ⇒ chain
mixes slowly

First 100 steps (with 𝜌 = 0.99)

−4 −2 0 2 4

−
4

−
2

0
2

4

X1

X
2

−4

−2

0

2

4

−4 −2 0 2 4
x1

x2

𝑃(𝑋1 ≥ 0, 𝑋2 ≥ 0) is estimated at 0.5635 (true ≈ 0.4775)
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Toy Example
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Toy Example
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Metropolis-within-Gibbs

What if sampling from full conditionals isn’t easy for Gibbs?

do a single Metropolis–Hastings step instead

What if parameters are naturally grouped in a real application?

e.g., some parameters correspond to location and others to scale
location parameters can usually be sampled at once, conditionally on
all the other parameters

blocked Gibbs sampler: blocks of variables are updated by sampling
from their joint conditional on all other variables
potentially via a M–H step

Limitations of the Gibbs sampler

limits the choice of target distributions
requires some knowledge of 𝑓
is multi-dimensional, by construction
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Gibbs Sampling in Practice

Many posterior distributions can be automatically decomposed into
conditional distributions by computer programs

→ This is the idea behind BUGS (Bayesian inference Using Gibbs
Sampling) or JAGS (Just another Gibbs Sampler) with R packages

rjags (see the JAGS user manual)
runjags Denwood (2016): for additional functionalities, including
parallel computing

The Stan platform implements MCMC sampling using the Hamiltonian
Monte Carlo (transitions rely on derivatives of the target) and its adaptive
variant NUTS

→ available in different languages (R, Python, Julia)
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Output Analysis

MCMC compared to MC:

sacrifices independence for more versatility
ergodic theory: independence not really needed in the long run

in practice, the question is: what is a long enough run?
just inspect the samples drawn (after discarding burnin)

check whether the acceptance rate is reasonable
visualize graphical outputs (to follow)
calculate diagnostic statistics (to follow)

in reality, we can never know
silent failure?! E.g., careless use of Gibbs (conditional distributions are
well defined but their combination does not correspond to any joint
distribution…), or positivity condition violated
but sometimes, we can know for sure that there is a problem!
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Output Analysis: Multiple starting points

Simple ideas such as running multiple chains and checking that they are
converging to similar distributions are often employed in practice

We start 𝑀 chains from various (dispersed) starting points
After enough iterations, the starting point should not matter and
hence we should obtain the same results based on each chain
We have the classical “sum of squares” decomposition in “intra
group” and “inter group” terms:

𝑀
∑
𝑚=1

𝑇
∑
𝑡=1

(𝑋𝑚,𝑡 − 𝑋̄⋅,⋅)
2 =

𝑀
∑
𝑚=1

𝑇
∑
𝑡=1

(𝑋̄𝑚,⋅ − 𝑋̄⋅,⋅)
2

+
𝑀

∑
𝑚=1

𝑇
∑
𝑡=1

(𝑋𝑚,𝑡 − 𝑋̄𝑚,⋅)
2
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Output Analysis: Multiple starting points
This leads to considering

𝑊 = 1
𝑀

𝑀
∑

𝑚=1

1
𝑇 − 1

𝑇
∑
𝑡=1

(𝑋𝑚,𝑡 − 𝑋̄𝑚,.)2

𝐵 = 1
𝑀 − 1

𝑀
∑

𝑚=1
(𝑋̄𝑚,⋅ − 𝑋̄.,.)2

𝑉 = (1 − 1
𝑇 ) 𝑊 + 𝐵

In principle 𝑊 (mean of empirical variance within each chain) and 𝑉
(empirical variance from all chains) should both converge to the true
variance of the target distribution → plot √𝑉 /𝑊 (for different iterations)
and compare it to 1 (version in R is slightly different)

This leads to the shrink factor of Gelman–Rubin: variance between chains relative
to variance within chains (if multiple chains reached the target then this factor
should be 1)

> 1 indicates instability, with variability in the combined chains exceeding
that within the chains
rule of thumb: red flag if > 1.05
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Output Analysis
trace plots are often used to informally assess stochastic convergence

if MCMC is working, they should look like a “fat, hairy caterpillar”
ACF (autocorrelation function) plots display the autocorrelation
within a chain as a function of the lag

if the ACF takes too long to decay to 0, the chain exhibits a high
degree of dependence and will tend to get stuck
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Output Analysis: Beta-Binomial Model
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the chains mix quickly (move quickly around plausible values of the
posterior)
the autocorrelation quickly drops off
shrink factor ≈ 1 (stability across parallel chains)

⇒ if not, use more iterations or try thinning, i.e., use every 𝑘-th
observation (reduces correlation) or different scaling of proposal (if M–H)
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Simple but Real Example
the height (in inches) of college students has 𝒩(𝜇, 𝜎2)

we work with 𝜎, i.e., the standard deviation instead of variance
only binned data available

X
(-Inf,60] (60,62] (62,64] (64,66] (66,68] (68,70] (70,72] (72,74] (74, Inf]

32 77 110 108 107 78 81 34 20

multinomial data, probabilities depend on 𝜇 and 𝜎
e.g., prob. of an obs. falling into (60, 62] is Φ𝜇,𝜎(62) − Φ𝜇,𝜎(60)

likelihood:

𝑓(𝑑 ∣ 𝜇, 𝜎) ∝
9

∏
𝑗=1

{Φ𝜇,𝜎(𝑎𝑗) − Φ𝜇,𝜎(𝑎𝑗−1)}𝑑𝑗 =∶ ℓ(𝜇, 𝜎)

prior: 𝑓(𝜇, 𝜎) = 1/𝜎
improper prior (Jeffrey’s prior)
changing variable 𝜆 = log(𝜎) removes 1/𝜎 from the posterior

Posterior:
𝑓(𝜇, 𝜎 ∣ 𝐷 = 𝑑) ∝ ℓ{𝜇, exp(𝜆)}
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Real but Simple Example

Aim: sample from posterior using normal random walk M–H

𝑈 (𝑡+1) = 𝑋(𝑡) + 𝑠𝑍

where 𝑍 ∼ 𝒩(0, Σ) and 𝑠 > 0 is a scale parameter
overparametrization for the sake of convenience (debatable)

for MH we have to choose
starting point (𝜇(0), 𝜆(0))⊤

scale 𝑠
covariance Σ
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Real but Simple Example

Looking at the binned data, why not take
(𝜇(0), 𝜆(0))⊤ = (68, 1)⊤

scale 𝑠 = 1 ⇒ acceptance too low (0.009), so let’s take 𝑠 = 0.1
covariance Σ = 𝐼2×2
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Acceptance rate: 0.3134
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Real but Simple Example

above starting point chosen badly
normally taken care of by burnin, here let’s re-run

(𝜇(0), 𝜆(0))⊤ = (66, 1.4)⊤
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Acceptance rate: 0.3196
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Real but Simple Example - Ouput Check
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Real but Simple Example - Ouput Check

the plots above look good, but values of 𝜇 are correlated for too long
their correlation can be reduced by taking Σ diagonal with the
variance for 𝜇 higher than that for 𝜆
actually, why not take Σ estimated from our previous run

[,1] [,2]
[1,] 3.035891e-02 7.329492e-05
[2,] 7.329492e-05 9.306388e-04

acceptance too high with our 𝑠 = 0.1 now, let’s increase 𝑠
𝑠 = 1 gives 58%
let’s take 𝑠 = 2
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Real but Simple Example - Final Run

Let’s analyze the output again
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Acceptance rate: 0.5386
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Real but Simple Example - Estimated Posterior
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The posterior mean estimates are 𝜇̂ = 66.159 and 𝜆̂ = 1.435
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Final Thoughts
Bayesianism is a different way of thinking about problems

e.g., hierarchical models
prior versus no prior
MLE versus MAP
sampling not the only way to be Bayesian

variational methods (back to optimization)
empirical Bayes (back to frequentism)

Hamiltonian MC and NUTS
explore the space in an adaptive way

BUGS & JAGS
packages for Bayesian computations (JAGS has R interface rjags)
uses model structure and Gibbs sampling whenever possible

STAN
a package with R interface rstan
uses NUTS

silent failure!?
multimodal distributions problematic for sampling
plateau regions problematic for optimization
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Final Thoughts

as sample size |𝐷| grows:
at first, we are going away from the prior, and the posterior is getting
complicated
then, the posterior becomes more and more regular (courtesy of CLT)
and the prior serves as a bit of regularization
eventually, the prior stops mattering

back to frequentism in the large sample limit
in every statistical task, there are three sources of error:

data is random (vanishes with increasing data set)
my model is wrong (never goes away)
inference is inexact (vanishes with investing more computational
resources)

Far better an approximate answer to the right question, than the exact answer to
the wrong question.

– John W. Tukey
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Assignment 8

No more assignments! But, I would appreciate your feedback on specific
aspects of the course

See the Moodle page of the course
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