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What is Classification?

Given data on predictor variables (covariates/features) 𝑋 ∈ ℝ𝑝 and a
categorical response variable 𝑌 ∈ {0, … , 𝐽 − 1}, build a model for

predicting the value of the response (class) from the predictors
understanding the relationship between predictors and the response

⇒ it is a supervised learning
Examples:

𝑋: diagnostic measurements and 𝑌 : presence/absence of disease
𝑋: credit score, age, marital status and 𝑌 : loan defaults (yes/no)

Classification Methods:

Linear discriminant analysis (1930’)
Logistic regression (1944)
Nearest neighbors classifiers (1951)
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What is Classification?

Given data which are realizations from

(𝑋1, 𝑌1), … , (𝑋𝑁 , 𝑌𝑁) i.i.d.,

the goal is to assign probabilities

𝜋𝑘(𝑥) = 𝑃(𝑌 = 𝑘 ∣ 𝑋 = 𝑥), for 𝑘 = 0, … , 𝐽 − 1

where 𝑥 can be a newly observed predictor (prediction)
⇒ similar to the regression function 𝑚(𝑥) = 𝔼(𝑌 ∣ 𝑋 = 𝑥)
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The Bayes Classifier

A classifier 𝒞 ∶ ℝ𝑝 → {0, … , 𝐽 − 1} assigns to a predictor 𝑋 a class,
i.e., its prediction for the corresponding 𝑌
The quality of a classifier can be measured by the expected 0-1 loss

𝑃{𝒞(𝑋𝑛𝑒𝑤) ≠ 𝑌𝑛𝑒𝑤}

The optimal classifier wrt this loss is the Bayes classifier

𝒞𝐵𝑎𝑦𝑒𝑠(𝑥) = arg max
0≤𝑘≤𝐽−1

𝜋𝑘(𝑥)

⇒ the lowest risk is obtained by classifying 𝑥 to the most probable class
In practice, 𝜋𝑘(⋅) (depends on the joint df of (𝑋, 𝑌 )) needs to be
estimated and plugged into the classifier 𝒞𝐵𝑎𝑦𝑒𝑠

Let’s estimate it non-parametrically while imposing some structural
assumptions
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Tree-based Methods

Predict 𝑦 from a feature vector 𝑥 ∈ ℝ𝑝 by dividing the feature space into
(non-overlapping) rectangles 𝐴1, … , 𝐴𝑚

⇒ works if 𝑦 is discrete (classification) or continuous (regression)
Rectangles can be achieved by making successive binary splits on the
predictors 𝑋1, … 𝑋𝑝

choose a variable 𝑋𝑗, 𝑗 = 1, … 𝑝
divide up the feature space according to

𝑋𝑗 ≤ 𝑠 and 𝑋𝑗 > 𝑠

proceed in each half

Questions: How to choose the splits? When to stop growing the tree?
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Classification Tree: Example

The iris dataset with four features (petal/sepal length and width) and
three species

Sepal.Length < 5.5

Sepal.Width >= 2.8 Sepal.Length < 6.2
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Classification Tree: Simulated Example
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Terminology

each split is called a node
a terminal node is called a leaf
interior nodes lead to branches
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Classification Trees

Classification trees are popular because they are interpretable and
(perhaps) mimic the way (some) decisions are made
A classification tree can be thought of as defining 𝑚 regions (rectangles)
𝐴1, … 𝐴𝑀 , each corresponding to a leaf of the tree

each 𝐴𝑚 is assigned a class label 𝑐𝑚 ∈ {0, … 𝐽 − 1} by majority
vote (the most common class in that region)
then a new point 𝑥+ ∈ ℝ𝑝 is classified by

𝑇 (𝑥+) =
𝑀

∑
𝑚=1

𝑐𝑚 ⋅ 𝕀{𝑥+∈𝐴𝑚} = 𝑐𝑚 such that 𝑥+ ∈ 𝐴𝑚 ⊂ ℝ𝑝

Finding out which region a given point 𝑥 belongs to is easy since the
regions 𝐴𝑚 are defined by a tree: just scan down the tree
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Classification Trees

Perform tests (sequentially) on
the attributes of 𝑥
Follow the branch that
corresponds to the outcome of
the tests
Repeat until you reach a leaf
node
Predict the label of 𝑥 to be that
of that leaf node

Sepal.Length < 5.5

Sepal.Width >= 2.8 Sepal.Length < 6.2

Sepal.Width >= 3.1

setosa
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35%
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.98  .02  .00

30%

versicolor
.14  .71  .14
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virginica
.05  .45  .50
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versicolor
.12  .65  .23

29%
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.71  .29  .00
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Tricky part: get a data-driven estimate of the partition: splitting
variables? split points?
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Predicted Class Probabilities
We can get the predicted class for new points, but also the predicted
class probability
For each class 𝑘 = 0, … , 𝐽 − 1, we can estimate the probability that the
class label is 𝑘 given that the feature vector lies in region 𝐴𝑚,
𝑃(𝑌 = 𝑘 ∣ 𝑋 ∈ 𝐴𝑚) by

𝑝𝑚𝑘 = ̂𝑝𝑘(𝐴𝑚) = 1
𝑛𝑚

∑
𝑥𝑖∈𝐴𝑚

𝕀{𝑦𝑖=𝑘}

the proportion of points in the region 𝐴𝑚 that are of class 𝑘, where
𝑛𝑚 = #{(𝑥𝑖, 𝑦𝑖) ∣ 𝑥𝑖 ∈ 𝐴𝑚}
The predicted class (by majority vote) can be expressed as

𝑐𝑚 = arg max
𝑘=0,…,𝐽−1

𝑝𝑚𝑘
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How to Grow a Tree?

The CART algorithm 1 estimates the tree model

𝑇 (𝑥) =
𝑀

∑
𝑚=1

𝑐𝑚 ⋅ 𝕀{𝑥∈𝐴𝑚}

using a greedy approach (local optimality/stage) based on binary splits
Starting at the top, for each coordinate 𝑗 ∈ {1, … , 𝑝} we look for the best
binary split defining

𝐴1(𝑗, 𝑠) = {𝑥 ∈ ℝ𝑝 ∶ 𝑥𝑗 ≤ 𝑠} and 𝐴2(𝑗, 𝑠) = {𝑥 ∈ ℝ𝑝 ∶ 𝑥𝑗 > 𝑠}

⇒ The values of 𝑗 ∈ {1, … , 𝑝} and 𝑠 ∈ ℝ are found by minimizing

min
𝑗,𝑠

{𝑄1(𝑇 ) + 𝑄2(𝑇 )}

where 𝑄𝑚(𝑇 ) is a node impurity measure (loss function)
1Breiman et al. (1984), ”Classification and Regression Trees”
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Node Impurity Measures for Classification

Recall that 𝑝𝑚𝑘 is the proportion of training observations in 𝐴𝑚 that are
from class 𝑘

misclassification error: 1
𝑛𝑚

∑𝑖∶𝑥𝑖∈𝐴𝑚
𝕀{𝑦𝑖≠𝑐𝑚} = 1 − 𝑝𝑚𝑐𝑚

Gini index: ∑𝑘≠𝑘′ 𝑝𝑚𝑘𝑝𝑚𝑘′ = ∑𝐽−1
𝑘=0 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)

Cross-entropy (or deviance): − ∑𝐽−1
𝑘=0 𝑝𝑚𝑘 log(𝑝𝑚𝑘)

For two classes (𝐽 = 2)

misclassification error: 1 − max(𝑝, 1 − 𝑝) (black)
is non-differentiable (bad for numerical optimization)

Gini index: 2𝑝(1 − 𝑝) (red)
Cross-entropy (or deviance): −𝑝 log(𝑝) − (1 − 𝑝) log(1 − 𝑝) (blue)

Growing a tree is based on either the Gini index or cross-entropy
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Why not minimize the misclassification error?
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Gini index and cross-entropy are more sensitive to small changes:
going from 𝑝 = 0.8 to 𝑝 = 0.9 is better than going from 𝑝 = 0.5 to
𝑝 = 0.6 (these are equal changes for the misclassification error)

⇒ the Gini index and the cross-entropy will favour pure nodes with
𝑝𝑚𝑘 ≈ 0 or 𝑝𝑚𝑘 ≈ 1
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How large should we grow the tree?

very large tree might overfit the data
small tree might not capture the important structure

⇒ Tree size is a tuning parameter reflecting the model’s complexity
Pruning:

build a large tree 𝑇0, stopping only when the number of observations
in each leaf is small (for ex. 5)
prune this large tree, i.e., collapse some of its leaves into the parent
nodes (backward elimination)

Alternative to pruning: grid search for the optimal maximal depth of the
tree by cross-validation (minimizing the misclassification rate)
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Pruning, by how much?
For any subtree 𝑇 ⊂ 𝑇0 that can be obtained by pruning 𝑇0, we define the
cost-complexity pruning:

𝐶𝜆(𝑇 ) = err𝑇 +𝜆|𝑇 |, 𝜆 ≥ 0
where |𝑇 | = # leaves in 𝑇 and err𝑇 is the misclassification rate
For a fixed value of 𝜆, we need to find the tree 𝑇𝜆 minimizing 𝐶𝜆(𝑇 )
→ done efficiently by slowly pruning the tree, i.e., constructing the sequence of
pruned trees that slowly increase the misclassification rate

successively delete the terminal node in the fully grown tree that yields the
smallest increase of the misclassification rate. This yields a sequence of
subtrees that must contain 𝑇𝜆

Choice of 𝜆 : trade-off between goodness-of-fit and complexity

a larger size means smaller bias and high variance
a smaller tree means larger bias and smaller variance

⇒ the value of 𝜆 will be chosen by 𝐾-fold CV error rates
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Pruning details

1 Use recursive binary splitting (e.g., using Gini index) to grow a large
tree on the training data, stopping only when each terminal node has
fewer than some minimum number of observations

2 Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of 𝜆

3 Use 𝐾-fold CV to choose 𝜆. For each 𝑘 = 1, … , 𝐾:
1 Repeat Steps 1 and 2 on the 𝐾−1

𝐾 -th fraction of the training data,
excluding the 𝑘-th fold

2 Evaluate the error rate on the data in the left-out 𝑘-th fold, as a
function of 𝜆

Average the results, and pick 𝜆 to minimize the average error
4 Return the subtree from Step 2 that corresponds to the chosen value

of 𝜆
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Pruning: Example

Left: fully grown classification tree (using Gini index)
Right: pruned tree found by CV (using misclassification error)
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Questions

Are there infinitely many splits to consider when growing?
No, as the split points 𝑠 are from the set of mid-points between
observed values

Pros of classification trees?
variable selection done automatically (part of the split selection)
missing values are dealt with by “surrogate splits” (exploit correlations
between covariates)
model free and easy to interpret
able to handle both numerical and categorical data
qualitative covariates are easily handled

Cons of classification trees?
rely on a greedy search (local optimal decisions) ⇒ no guarantee to
return globally optimal tree
classification accuracy is not great
tend to have high variance: small changes in the training data can
produce big changes in the estimated tree

→ this can be fixed if we are willing to give up interpretability
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How to Fix This?

Let’s think back to CV, and why it gives much better results than the
validation set approach
Validation set: if you pick a different random split, you can get wildly
different estimates of test error
𝐾-fold CV produces much more stable error estimates by averaging
over 𝐾 separate estimates of error
The idea of Bagging (Bootstrap AGGregatING) has a similar
motivation: to decrease the variance of a high-variance estimator, we
can average across a bunch of estimators
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Bagging 2

For a model ̂𝑓 ∶ 𝑥 ↦ ̂𝑓(𝑥) = ̂𝑦, e.g., ̂𝑓 = 𝑇

resample the training data 𝒟 = {(𝑥𝑖, 𝑦𝑖)}
𝑁
𝑖=1 to create 𝐵 artificial datasets

𝒟(𝑏) = {(𝑥𝑖, 𝑦𝑖)
(𝑏)}

𝒟(𝑏) might have the same size 𝑁 (sample with replacement:
bootstraping)
or 𝒟(𝑏) might be smaller than 𝑁 (sample without replacement:
subsampling)

train a model ̂𝑓 (𝑏) on each 𝒟(𝑏)

perform bagging: “aggregate” the models { ̂𝑓 (𝑏)}, i.e., for an input 𝑥+,
predict by majority vote:

̂𝑦+ = arg max
𝑘

# { ̂𝑓 (𝑏) (𝑥+) = 𝑘}

2Breiman (1996) ”Bagging predictors”
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Bagging

Bias-variance tradeoff of bagging:

typically reduces variance
𝑓 (𝑏) are dependent: if they are highly correlated then the variance
reduction will be small

typically increases bias
generally, the increase in bias is smaller than the reduction in variance
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Bagging Trees

Bagging tree algorithm:

choose 𝐵 large (usually 500)
for 𝑏 = 1, … , 𝐵, fit unpruned trees 𝑇 (𝑏) to the 𝑏th bootstrap sample
(or subsample)
“aggregate” the trees {𝑇 (𝑏)}, i.e., for an input 𝑥+, predict by
majority vote (from the 𝐵 trees)

̂𝑦+ = arg max
𝑘

# {𝑇 (𝑏) (𝑥+) = 𝑘}

Why does it work well?

each unpruned tree has low bias but high variance
the correlation between the trees is typically small when using
bootstrap samples
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Bagging Trees: Example

Original Tree

X.2 < 0.69

X.4 < −0.44

0
0.47
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0
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0
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30%

0
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37%

1
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b=1

X.3 < 0.28

X.1 >= −0.25

X.1 < −0.32

X.1 < 0.53

X.1 >= 0.24

0
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0
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0
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0
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0
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1
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1
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1
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b=2

X.2 < 0.69
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b=3
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b=4
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b=5
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Predicted Class Probabilities?

Aim: probability estimate ̂𝜋𝑘(𝑥) from the bagging tree

we can consider the proportion of bootstrapped trees that voted for
class 𝑘

̂𝜋𝑣𝑜𝑡𝑒
𝑘 (𝑥) = 1

𝐵
𝐵

∑
𝑏=1

{𝑇 (𝑏)(𝑥) = 𝑘}

⇒ bad idea…
Suppose we have two classes, and the true probability that 𝑦0 = 1 when
𝑋 = 𝑥0 is 0.75
Suppose each of the bagged trees correctly classifies 𝑥0 to class 1
⇒ ̂𝜋𝑣𝑜𝑡𝑒

1 (𝑥0) = 1, which is wrong!
Instead, we can use each tree’s predicted class probabilities: probability
bagging
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Predicted Class Probabilities?

Instead of just looking at the class predicted by each tree (the
classification itself), look at the predicted class probabilities ̂𝜋(𝑏)

𝑘 (𝑥)
Define the bagging estimate of class probabilities:

̂𝜋bag
𝑘 (𝑥) = 1

𝐵
𝐵

∑
𝑏=1

̂𝜋(𝑏)
𝑘 (𝑥) 𝑘 = 0, … 𝐽 − 1

Given an input vector 𝑥0, we can classify it according to

̂𝑦bag
0 = arg max

𝑘=0,…𝐽−1
̂𝜋bag
𝑘 (𝑥)

⇒ preferred if we want to estimate class probabilities, and it may improve
overall classification accuracy (compared to majority vote)
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Predicted Class Probabilities?

Figure 8.10 from ESL
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Bagging: Summary

There are two strategies for aggregating predictions

taking the class with the majority vote
evraging the estimated class probabilities and then voting
reduces the variance of the base learner
is most effective if we use strong base learners with little bias but high
variance
bagging a good classifier can improve predictive accuracy, but
bagging a bad one can seriously degrade predictive accuracy
the final bagged classifier is not a tree → we lose interpretability
increased computational complexity
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Improvements? Random Forests (Breiman, 2001)

Random forests extend bagging by incorporating a small tweak
⇒ decrease correlations of bagged trees by making them “more random”
⇒ decreases the variance
Random forest algorithm:

bootstrap the data 𝐵 times
to grow a bagged tree, before performing each split, randomly select 𝑚 of
the 𝑝 variables to be used for the split

the subset of variables changes at each split
grow full, unpruned trees

for prediction: majority vote from the 𝐵 trees
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Random Forests

Intuition: if one variable is much more important than the others then all
bagged trees will select this variable for the first split, making these trees
similar (hence correlated). Selecting a random subset of 𝑚 variables for
each split avoids this!
Choice of 𝑚: 𝑚 = ⌊√𝑝⌋ for classification seems to work well in practice

e.g., if we have 100 predictors, each split will be allowed to choose 10
randomly selected predictors

Note: bagging is a special case of random forests with 𝑚 = 𝑝
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Pros and Cons of Random Forests

Pros:
great predictive performance
stable: small change in the data might change the individual trees but
the forest is relatively stable
almost no tuning required
out-of-bag (oob) error estimates (no CV)

use the 𝑒−1% ≈ 37% data not selected in the 𝑏th bootstrap sample to
estimate the prediction error from the 𝑏th tree
can be shown to be equivalent to CV

variable importance
compute the importance of the 𝑗th variable 𝑋𝑗 by randomly shuffling
its values for the oob data and then measuring the increase in
prediction error/decrease in accuracy
the higher the increase, the most important is the variable

Cons:
lose the interpretability of a single tree
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Final Thoughts
Bagging

improves the prediction accuracy for high variance (and low bias)
models (such as classification trees) at the expense of interpretability
and computational speed
consists of independent processes ⇒ algorithm is easily parallelizable
results in (very) correlated trees ⇒ variance reduction is limited

Random Forests
decrease the correlation between bagged trees by considering a random
subset of the features/predictors/covariates

⇒ faster than bagging
little theory but consistency was proved and a method to obtain CI was
proposed

We didn’t discuss Boosting that builds up the ensemble sequentially
e.g., to boost trees, we grow small trees, one at a time, at each step
trying to improve the model fit in places we’ve done poorly so far
still lose interpretability but like RF and bagging, captures complex
structures in the data (vs additive models, e.g., logistic regression)
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https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Consistency-of-random-forests/10.1214/15-AOS1321.full
https://jmlr.org/papers/volume15/wager14a/wager14a.pdf
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