Week 13: Tree-based Methods for Classification MATH-517 Statistical Computation and Visualization

Linda Mhalla

2024-12-13

1/33

What is Classification?

Given data on predictor variables (covariates/features) $X \in \mathbb{R}^p$ and a categorical response variable $Y \in \{0, \dots, J-1\}$, build a model for

- predicting the value of the response (class) from the predictors
- understanding the relationship between predictors and the response

 \Rightarrow it is a supervised learning

Examples:

- X: diagnostic measurements and Y: presence/absence of disease
- X: credit score, age, marital status and Y: loan defaults (yes/no)

Classification Methods:

- Linear discriminant analysis (1930')
- Logistic regression (1944)
- Nearest neighbors classifiers (1951)

Given data which are realizations from

$$(X_1,Y_1),\ldots,(X_N,Y_N) \quad \text{i.i.d.},$$

the goal is to assign probabilities

$$\pi_k(x)=P(Y=k\mid X=x), \quad \text{for } k=0,\ldots,J-1$$

where x can be a newly observed predictor (prediction)

 \Rightarrow similar to the regression function $m(x) = \mathbb{E}(Y \mid X = x)$

The Bayes Classifier

- A classifier $\mathcal{C}:\mathbb{R}^p\to\{0,\dots,J-1\}$ assigns to a predictor X a class, i.e., its prediction for the corresponding Y
- The quality of a classifier can be measured by the expected 0-1 loss

$$P\{\mathcal{C}(X_{new}) \neq Y_{new}\}$$

• The optimal classifier wrt this loss is the Bayes classifier

$$\mathcal{C}_{Bayes}(x) = \mathop{\arg\max}\limits_{0 \leq k \leq J-1} \pi_k(x)$$

 \Rightarrow the lowest risk is obtained by classifying x to the most probable class In practice, $\pi_k(\cdot)$ (depends on the joint df of (X,Y)) needs to be estimated and plugged into the classifier \mathcal{C}_{Bayes}

Let's estimate it non-parametrically while imposing some structural assumptions

Tree-based Methods

Predict y from a feature vector $x\in\mathbb{R}^p$ by dividing the feature space into (non-overlapping) rectangles A_1,\ldots,A_m

 \Rightarrow works if y is discrete (classification) or continuous (regression)

Rectangles can be achieved by making successive binary splits on the predictors $X_1,\ldots X_p$

- $\bullet\,$ choose a variable $X_j,\,j=1,\dots p$
- divide up the feature space according to

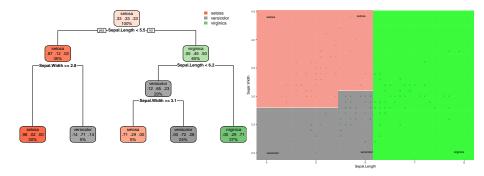
$$X_j \leq s \text{ and } X_j > s$$

proceed in each half

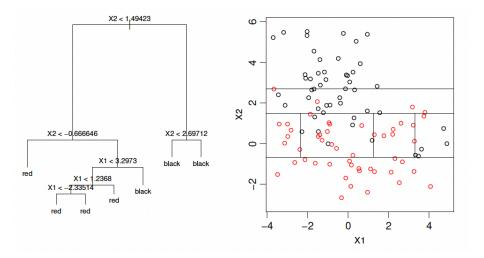
Questions: How to choose the splits? When to stop growing the tree?

Classification Tree: Example

The iris dataset with four features (petal/sepal length and width) and three species



Classification Tree: Simulated Example



- each split is called a **node**
- a terminal node is called a leaf
- interior nodes lead to branches

Classification Trees

Classification trees are popular because they are interpretable and (perhaps) mimic the way (some) decisions are made

A classification tree can be thought of as defining m regions (rectangles) $A_1,\ldots A_M$, each corresponding to a leaf of the tree

- each A_m is assigned a class label $c_m \in \{0, \dots J 1\}$ by majority vote (the most common class in that region)
- \bullet then a new point $x_+ \in \mathbb{R}^p$ is classified by

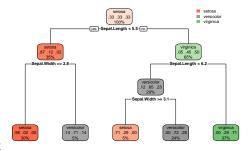
$$T(x_+) = \sum_{m=1}^M c_m \cdot \mathbb{I}_{\{x_+ \in A_m\}} = c_m \text{ such that } x_+ \in A_m \subset \mathbb{R}^p$$

Finding out which region a given point x belongs to is easy since the regions A_m are defined by a tree: just scan down the tree

Classification Trees

- Perform tests (sequentially) on the attributes of *x*
- Follow the branch that corresponds to the outcome of the tests
- Repeat until you reach a leaf node
- Predict the label of x to be that of that leaf node

Tricky part: get a data-driven estimate of the partition: splitting variables? split points?



Predicted Class Probabilities

We can get the predicted class for new points, but also the **predicted class probability**

For each class $k=0,\ldots,J-1,$ we can estimate the probability that the class label is k given that the feature vector lies in region A_m , $P(Y=k\mid X\in A_m)$ by

$$p_{mk} = \hat{p}_k(A_m) = \frac{1}{n_m} \sum_{x_i \in A_m} \mathbb{I}_{\{y_i = k\}}$$

the proportion of points in the region A_m that are of class k , where $n_m=\#\{(x_i,y_i)\mid x_i\in A_m\}$

The predicted class (by majority vote) can be expressed as

$$c_m = \mathop{\arg\max}\limits_{k=0,\dots,J-1} p_{mk}$$

How to Grow a Tree?

The **CART** algorithm ¹ estimates the tree model

$$T(x) = \sum_{m=1}^M c_m \cdot \mathbb{I}_{\{x \in A_m\}}$$

using a greedy approach (local optimality/stage) based on binary splits Starting at the top, for each coordinate $j \in \{1, ..., p\}$ we look for the best binary split defining

$$A_1(j,s) = \left\{ x \in \mathbb{R}^p : x_j \leq s \right\} \quad \text{ and } \quad A_2(j,s) = \left\{ x \in \mathbb{R}^p : x_j > s \right\}$$

 \Rightarrow The values of $j \in \{1, \ldots, p\}$ and $s \in \mathbb{R}$ are found by minimizing

$$\min_{j,s}\{Q_1(T)+Q_2(T)\}$$

where $Q_m(T)$ is a **node impurity measure** (loss function)

¹Breiman et al. (1984), "Classification and Regression Trees"

Linda Mhalla

Week 13: Tree-based Methods for Classificati

Node Impurity Measures for Classification

Recall that p_{mk} is the proportion of training observations in ${\cal A}_m$ that are from class k

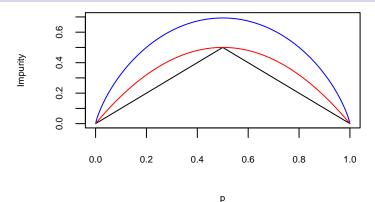
- misclassification error: $\frac{1}{n_m}\sum_{i:x_i\in A_m}\mathbb{I}_{\{y_i\neq c_m\}} = 1 p_{mc_m}$ Gini index: $\sum_{k\neq k'}p_{mk}p_{mk'} = \sum_{k=0}^{J-1}p_{mk}(1-p_{mk})$
- Cross-entropy (or deviance): $-\sum_{k=0}^{J-1} p_{mk} \log(p_{mk})$

For two classes (J = 2)

- misclassification error: $1 \max(p, 1-p)$ (black)
 - is non-differentiable (bad for numerical optimization)
- $\bullet~{\rm Gini~index:}~2p(1-p)$ (red)
- \bullet Cross-entropy (or deviance): $-p\log(p)-(1-p)\log(1-p)$ (blue)

Growing a tree is based on either the Gini index or cross-entropy

Why not minimize the misclassification error?



• Gini index and cross-entropy are more sensitive to small changes: going from p = 0.8 to p = 0.9 is better than going from p = 0.5 to p = 0.6 (these are equal changes for the misclassification error)

 \Rightarrow the Gini index and the cross-entropy will favour pure nodes with $p_{mk}\approx 0$ or $p_{mk}\approx 1$

Linda Mhalla

How large should we grow the tree?

- very large tree might overfit the data
- small tree might not capture the important structure
- \Rightarrow Tree size is a tuning parameter reflecting the model's complexity

Pruning:

- build a large tree T_0 , stopping only when the number of observations in each leaf is small (for ex. 5)
- prune this large tree, i.e., collapse some of its leaves into the parent nodes (backward elimination)

Alternative to pruning: grid search for the optimal maximal depth of the tree by cross-validation (minimizing the misclassification rate)

Pruning, by how much?

For any subtree $T \subset T_0$ that can be obtained by pruning $T_0,$ we define the cost-complexity pruning:

 $C_\lambda(T)=\mathrm{err}_T+\lambda|T|,\quad \lambda\geq 0$

where |T| = # leaves in T and err_T is the misclassification rate

For a fixed value of $\lambda,$ we need to find the tree T_λ minimizing $C_\lambda(T)$

 \to done efficiently by slowly pruning the tree, i.e., constructing the sequence of pruned trees that slowly increase the misclassification rate

• successively delete the terminal node in the fully grown tree that yields the smallest increase of the misclassification rate. This yields a sequence of subtrees that must contain T_λ

Choice of λ : trade-off between goodness-of-fit and complexity

- a larger size means smaller bias and high variance
- a smaller tree means larger bias and smaller variance

 \Rightarrow the value of λ will be chosen by $K\text{-fold}\ \mathrm{CV}$ error rates

Pruning details

- Use recursive binary splitting (e.g., using Gini index) to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations
- ② Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of λ
- **③** Use K-fold CV to choose λ . For each k = 1, ..., K:
 - **9** Repeat Steps 1 and 2 on the $\frac{K-1}{K}$ -th fraction of the training data, excluding the k-th fold
 - @ Evaluate the error rate on the data in the left-out k-th fold, as a function of λ

Average the results, and pick λ to minimize the average error

() Return the subtree from Step 2 that corresponds to the chosen value of λ

Pruning: Example

Left: fully grown classification tree (using Gini index) Right: pruned tree found by CV (using misclassification error)



Questions

- Are there infinitely many splits to consider when growing?
 - No, as the split points *s* are from the set of mid-points between observed values

Questions

- Are there infinitely many splits to consider when growing?
 - No, as the split points *s* are from the set of mid-points between observed values
- Pros of classification trees?
 - variable selection done automatically (part of the split selection)
 - missing values are dealt with by "surrogate splits" (exploit correlations between covariates)
 - model free and easy to interpret
 - able to handle both numerical and categorical data
 - qualitative covariates are easily handled

Questions

- Are there infinitely many splits to consider when growing?
 - No, as the split points *s* are from the set of mid-points between observed values
- Pros of classification trees?
 - variable selection done automatically (part of the split selection)
 - missing values are dealt with by "surrogate splits" (exploit correlations between covariates)
 - model free and easy to interpret
 - able to handle both numerical and categorical data
 - qualitative covariates are easily handled
- Cons of classification trees?
 - rely on a greedy search (local optimal decisions) \Rightarrow no guarantee to return globally optimal tree
 - classification accuracy is not great
 - tend to have high variance: small changes in the training data can produce big changes in the estimated tree
 - $\bullet \ \rightarrow$ this can be fixed if we are willing to give up interpretability

- Let's think back to CV, and why it gives much better results than the validation set approach
- Validation set: if you pick a different random split, you can get wildly different estimates of test error
- *K*-fold CV produces much more stable error estimates by averaging over *K* separate estimates of error
- The idea of **Bagging (Bootstrap AGGregatING)** has a similar motivation: to decrease the variance of a high-variance estimator, we can average across a bunch of estimators

Bagging ²

For a model $\widehat{f}:x\mapsto \widehat{f}(x)=\widehat{y},$ e.g., $\widehat{f}=\widehat{T}$

- resample the training data $\mathcal{D} = \left\{ (x_i, y_i) \right\}_{i=1}^N$ to create B artificial datasets $\mathcal{D}^{(b)} = \left\{ (x_i, y_i)^{(b)} \right\}$
 - $\mathcal{D}^{(b)}$ might have the same size N (sample with replacement: bootstraping)
 - or $\mathcal{D}^{(b)}$ might be smaller than N (sample without replacement: subsampling)
- \bullet train a model $\hat{f}^{(b)}$ on each $\mathcal{D}^{(b)}$
- perform **bagging**: "aggregate" the models $\left\{\hat{f}^{(b)}\right\}$, i.e., for an input x_+ , predict by majority vote:

$$\hat{y}_{+} = \operatorname*{arg\,max}_{k} \# \left\{ \hat{f}^{(b)}\left(x_{+}\right) = k \right\}$$

²Breiman (1996) "Bagging predictors"

Linda Mhalla

Week 13: Tree-based Methods for Classificati

Bias-variance tradeoff of bagging:

- typically reduces variance
 - $f^{\left(b\right)}$ are dependent: if they are highly correlated then the variance reduction will be small
- typically increases bias
- generally, the increase in bias is smaller than the reduction in variance

Bagging tree algorithm:

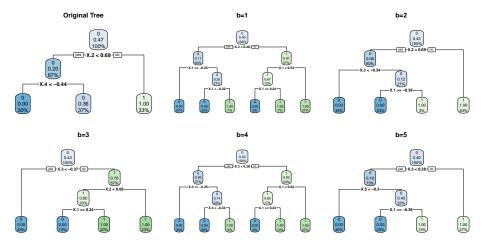
- choose B large (usually 500)
- for $b=1,\ldots,B$, fit **unpruned trees** $\widehat{T}^{(b)}$ to the bth bootstrap sample (or subsample)
- "aggregate" the trees $\left\{\widehat{T}^{(b)}\right\}$, i.e., for an input x_+ , predict by majority vote (from the B trees)

$$\hat{y}_{+} = \operatorname*{arg\,max}_{k} \# \left\{ \widehat{T}^{(b)}\left(x_{+}\right) = k \right\}$$

Why does it work well?

- each unpruned tree has low bias but high variance
- the correlation between the trees is typically small when using bootstrap samples

Bagging Trees: Example



Predicted Class Probabilities?

Aim: probability estimate $\hat{\pi}_k(x)$ from the bagging tree

 \bullet we can consider the proportion of bootstrapped trees that voted for class k

$$\hat{\pi}_{k}^{vote}(x) = \frac{1}{B} \sum_{b=1}^{B} \{ \widehat{T}^{(b)}(x) = k \}$$

 \Rightarrow bad idea...

Suppose we have two classes, and the true probability that $y_0=1$ when $X=x_0 \ {\rm is} \ 0.75$

Suppose each of the bagged trees correctly classifies x_0 to class 1

$$\Rightarrow \hat{\pi}_1^{vote}(x_0) = 1$$
, which is wrong!

Instead, we can use each tree's predicted class probabilities: probability bagging

Predicted Class Probabilities?

Instead of just looking at the class predicted by each tree (the classification itself), look at the predicted class probabilities $\hat{\pi}_k^{(b)}(x)$

• Define the bagging estimate of class probabilities:

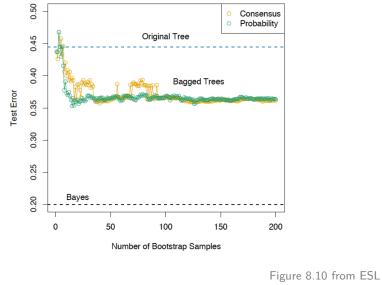
$$\hat{\pi}_k^{\rm bag}(x) = \frac{1}{B}\sum_{b=1}^B \hat{\pi}_k^{(b)}(x) \quad k = 0, \dots J-1$$

• Given an input vector x_0 , we can classify it according to

$$\hat{y}_0^{\mathrm{bag}} = \mathop{\mathrm{arg\,max}}_{k=0,\ldots J-1} \hat{\pi}_k^{\mathrm{bag}}(x)$$

 \Rightarrow preferred if we want to estimate class probabilities, and it may improve overall classification accuracy (compared to majority vote)

Predicted Class Probabilities?



2024-12-13 27 / 33

There are two strategies for aggregating predictions

- taking the class with the majority vote
- evraging the estimated class probabilities and then voting
- reduces the variance of the base learner
- is most effective if we use strong base learners with little bias but high variance
- bagging a good classifier can improve predictive accuracy, but bagging a bad one can seriously degrade predictive accuracy
- $\bullet\,$ the final bagged classifier is not a tree \rightarrow we lose interpretability
- increased computational complexity

Random forests extend bagging by incorporating a small tweak

- \Rightarrow decrease correlations of bagged trees by making them "more random"
- \Rightarrow decreases the variance

Random forest algorithm:

- bootstrap the data B times
- \bullet to grow a bagged tree, before performing each split, randomly select m of the p variables to be used for the split
 - the subset of variables changes at each split
 - grow full, unpruned trees
- ${\ensuremath{\bullet}}$ for prediction: majority vote from the B trees

29/33

Intuition: if one variable is much more important than the others then all bagged trees will select this variable for the first split, making these trees similar (hence correlated). Selecting a random subset of m variables for each split avoids this!

Choice of m: $m = \lfloor \sqrt{p} \rfloor$ for classification seems to work well in practice

• e.g., if we have 100 predictors, each split will be allowed to choose 10 randomly selected predictors

Note: bagging is a special case of random forests with m = p

Pros and Cons of Random Forests

• Pros:

- great predictive performance
- stable: small change in the data might change the individual trees but the forest is relatively stable
- almost no tuning required
- out-of-bag (oob) error estimates (no CV)
 - use the $e^{-1}\%\approx 37\%$ data not selected in the $b{\rm th}$ bootstrap sample to estimate the prediction error from the $b{\rm th}$ tree
 - can be shown to be equivalent to CV
- variable importance
 - compute the importance of the *j*th variable X_j by randomly shuffling its values for the oob data and then measuring the increase in prediction error/decrease in accuracy
 - the higher the increase, the most important is the variable

Cons:

• lose the interpretability of a single tree

Final Thoughts

- Bagging
 - improves the prediction accuracy for high variance (and low bias) models (such as classification trees) at the expense of interpretability and computational speed
 - $\bullet\,$ consists of independent processes $\Rightarrow\,$ algorithm is easily parallelizable
 - $\bullet\,$ results in (very) correlated trees \Rightarrow variance reduction is limited
- Random Forests
 - decrease the correlation between bagged trees by considering a random subset of the features/predictors/covariates
 - \Rightarrow faster than bagging
 - little theory but consistency was proved and a method to obtain CI was proposed
- We didn't discuss **Boosting** that builds up the ensemble sequentially
 - e.g., to boost trees, we grow small trees, one at a time, at each step trying to improve the model fit in places we've done poorly so far
 - still lose interpretability but like RF and bagging, captures complex structures in the data (vs additive models, e.g., logistic regression)

- T. Hastie, R. Tibshirani and J. Friedman (2008) The Elements of Statistical Learning (2nd Edition)
- G. James, D. Witten, T. Hastie and R. Tibshirani (2013) An Introduction to Statistical Learning, with applications in *R*